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Dynamic Matching in Overloaded Waiting Lists†

By Jacob D. Leshno*

This paper introduces a stylized model to capture distinctive features 
of waiting list allocation mechanisms. First, agents choose among 
items with associated expected wait times. Waiting times serve a sim-
ilar role to that of monetary prices in directing agents’ choices and 
rationing items. Second, the expected wait for an item is endoge-
nously determined and randomly fluctuates over time. We evaluate 
welfare under these endogenously determined waiting times and find 
that waiting time fluctuations lead to misallocation and welfare loss. 
A simple randomized assignment policy can reduce misallocation 
and increase welfare. (JEL C78, D61, D82, D83)

From nursery schools to nursing homes, waiting lists are a common tool for allo-
cating scarce goods that arrive stochastically over time to agents that accumulate 
over time.1 In such settings it is impossible to allocate all items at once, and waiting 
lists are used to dynamically allocate items over time. We focus on overloaded wait-
ing lists, where items are scarce and many agents are waiting for any arriving item. 
Examples include waiting lists for public housing, organ transplants, nursing homes, 
and daycare centers.2 Given the high demand, all items can be readily assigned. But 

1 Waiting lists are common in practice. Some examples include publicly provided medical services (Lindsay 
and Feigenbaum 1984; Martin and Smith 1999), organs for transplant (Kessler and Roth 2014), and public housing 
(Kaplan 1984). The inspiration for this work came from problems arising from allocating senior citizens to publicly 
provided nursing homes in Quebec, Canada. Barzel (1974) describes how waiting time can be used to ration goods 
when monetary prices are fixed to be below the market price. Waiting lists are also used by for-profit firms; for 
example, many National Football League teams hold waiting lists for season tickets (Forbes 2007).

2 The rate at which applicants join the waiting list often exceeds the rate at which items arrive, leading to long 
and growing waiting lists. For example, the Chicago Housing Authority runs a lottery to determine who can join its 
long waiting list, because the number of potential applicants is too large and the median applicant on the waiting 
list drops out without being assigned (Chicago Housing Authority 2016). See also a similar assumption in Kaplan 
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when items are heterogeneous and agents have heterogeneous preferences,3 to max-
imize welfare the assignment needs to efficiently match agents to items.

This paper introduces a new stylized model to capture distinctive features of wait-
ing list allocation mechanisms. First, agents choose among items with associated 
expected wait times. Waiting times serve a similar role to that of monetary prices 
in directing agents’ choices and rationing items. Second, the expected wait for an 
item is endogenously determined and randomly fluctuates over time. In particular, 
different agents make their choice at different times and may face different menus 
of options.

In the model, two kinds of items, ​A​ and ​B​, stochastically arrive over time and are 
assigned to agents as they arrive. Agents join the overloaded waiting list according 
to an exogenous arrival process.4 Agents incur waiting costs until they are assigned, 
regardless of whether or not they participate in the waiting list mechanism.5 All 
agents incur the same waiting costs but differ in their preferences over the two items. 
We say that agents are mismatched if they are assigned to their less-preferred item. 
Because waiting is costly, agents will choose to wait for their preferred item only if 
the required expected wait is sufficiently low.

As an illustration, consider two agents, ​α​ and ​β​, where ​α​ prefers an ​A​ item and ​β​ 
prefers a ​B​ item. Suppose that in period 1 a ​B​ item arrives, and in period ​t​ an ​A​ item 
arrives. Consider the two possible assignments: either both agents get their preferred 
item and ​α​ waits, or both agents get their mismatched item and ​β​ waits. Total wait-
ing costs are equal across the two assignments, and therefore the former assignment 
maximizes welfare. But if ​t​ is large then ​α​ prefers the inefficient latter assignment 
because the costly wait is transferred to ​β​. Thus, a mechanism that allows ​α​ to 
choose between the two assignments can generate a socially inefficient assignment.

As illustrated by the example, total waiting time cost are constant across assign-
ments in the overloaded waiting list model. Agents join the waiting list exogenously, 
and an agent’s costs of waiting can only be reduced by assignment of an item. Each 
arriving item reduces the waiting cost of one assigned agent, while other agents 
remain waiting. Thus, total waiting costs are constant across assignments that assign 
all items, and welfare is entirely determined by the fraction of mismatched agents.

Expected waiting times serve a similar role to monetary prices in guiding the 
allocation. Given a sufficiently long expected wait for ​A​ items, agents prefer an 
earlier assignment to a ​B​ item (even if it is their less-preferred item) because of 
the reduced waiting costs.6 Offering equal waiting times for both items induces 
all agents to choose their preferred item. Alternatively, items can be rationed by 

(1986). As of December 2016, more than 90,000 patients in the United States are waiting for a kidney transplant, 
with 22 people a day dying while waiting for transplant (UNOS 2016). Private conversations with daycare centers 
and the administration of the public nursing home system in Quebec indicate that long waiting lists are common 
there as well.

3 Patients differ in their preferences over organs for transplant based on immunocompatibility and proper organ 
size. Applicants to public housing, daycare centers, and nursing homes differ in their geographical preferences over 
locations.

4 For example, applicants sign up to join the public housing waiting list when they become eligible.
5 For example, public housing applicants incur a waiting cost from having to pay higher private market rent. 

Applicants pay this waiting cost until receiving subsidized public housing regardless of whether or not they regis-
tered to the waiting list.

6 The reduced waiting costs are not eliminated, but transferred to other agents who remain waiting.
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offering a sufficiently longer expected wait for overdemanded items. Like monetary 
prices, waiting times can communicate to agents whether items are overdemanded.

But in contrast to monetary prices, expected waiting times are endogenously 
determined and fluctuate over time. If the mechanism already promised future arriv-
ing items to some agents, the mechanism is forced to offer a longer wait to the next 
agent. Moreover, expected waiting times vary with the current state of the system, 
which randomly fluctuates because of the random arrival of items and the unknown 
preferences of approached agents. Even if ​A​ and ​B​ items are equally likely to arrive 
and agents are equally likely to prefer each item, it is possible for many ​B​ items to 
arrive in succession while the mechanism approaches many agents who prefer ​A​. In 
such case, some of these agents must be offered long waiting times for an ​A​ item, 
inducing some agents to mismatch. 

To investigate welfare under endogenously determined and fluctuating waiting 
times, we analyze a common waiting list mechanism: the waiting list with declines.7 
When an item arrives, this mechanism approaches an agent and offers a choice 
between taking the current item or declining the item and keeping their position. If 
the item is declined, the mechanism immediately approaches the next agent in line. 
The mechanism informs agents of their position, giving agents all available infor-
mation about their expected wait.8

The waiting-list-with-declines mechanism embodies the two features listed 
above. Agents can choose between immediate assignment to the current item or 
an expected wait and assignment to the other item, and the expected wait for the 
other item is endogenously determined by the number of agents ahead of them. If 
agents face an appropriate expected wait, their choices will be socially efficient. But 
expected waiting times randomly fluctuate because of the randomness in the item 
arrival process and the random composition of agents in the waiting list. Moreover, 
expected waiting times fluctuate even if the waiting list holds many agents. Analysis 
of the waiting-list-with-declines mechanism allows us to quantify welfare under 
the endogenously determined waiting times, explain how waiting time fluctuations 
cause welfare loss, and suggest alternative designs.

To analyze the waiting list with declines, it is useful to represent it as a buffer-queue 
mechanism. Under the buffer-queue representation, an agent who declines an item 
to wait for his preferred item is said to join a buffer queue for the preferred item. Two 
buffer queues, one for each kind of item, hold agents who declined a mismatched 
item and are waiting to be assigned their preferred item. The waiting list with 
declines is equivalent to a buffer queue mechanism with the first-come-first-served 
(FCFS) queuing policy.

The buffer-queue representation allows us to determine how often agents choose 
a mismatched item and calculate welfare. The system’s dynamics are captured by a 
tractable Markov chain whose states are the number of agents in each buffer queue. 
The number of agents in a buffer queue can be thought of as the current imbalance 
between the demand from approached agents and the supply of arriving items. In 

7 This mechanism is a simplification of common mechanisms. Variants of this mechanism or equivalent for-
mulations of it are commonly used for organ allocation (UNOS 2014) and allocation of spots in daycare centers. 
Thakral (2016) provides arguments in favor of this mechanism.

8 This is a stylized modeling assumption. In many applications, agents are only given partial information about 
the current state of the system and their expected wait. See Section III and the comments below.
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states of higher imbalance (many agents accumulating in the buffer queue), agents 
need to wait longer for their preferred item; under FCFS, the expected wait for 
an agent who joins the buffer queue increases linearly with the number of agents 
already in the buffer queue ahead of him.

Even if demand from agents and supply of items are balanced on average, the 
random arrivals of items and random preferences of approached agents cause the 
state to randomly fluctuate. In states of high imbalance, the mechanism offers a 
long expected wait that induces agents to prefer an immediate mismatched item. 
We calculate the misallocation rate by calculating the stationary distribution of the 
fluctuating state and the probability that imbalance becomes sufficiently high for 
the offered expected wait to be unacceptable. A similar approach can be applied to 
analyze other waiting list mechanisms as well.9

Given the welfare loss, we use the model to consider alternative designs. The 
planner would like to provide agents with information about expected waiting times 
to convey useful long-run information (e.g., all agents prefer ​A​ items, and therefore ​
A​ items need to be rationed), but shield agents from random fluctuations (e.g., tem-
porary shortage of ​A​ items). We derive alternative queuing policies and information 
designs that reduce fluctuations in expected waiting times, and thus reduce misallo-
cation. These alternative designs can increase welfare without imposing additional 
delays or changing the way the mechanism approaches agents.10

Better information design can reduce misallocation. If the mechanism can limit 
information about the current state, it can improve welfare by only giving agents a 
binary signal about their position: suggesting whether the agent should wait for the 
preferred item or take the immediate mismatch. Agents make their choice based on 
the average expected wait across states, allowing the mechanism to signal agents 
to wait and endure longer wait in some states of high imbalance if on average the 
expected wait is acceptable because of the low wait in states of low imbalance. 
In other words, by hiding information, the mechanism can offer the same accept-
able wait even if the state fluctuates. In practice many waiting list mechanisms 
provide infrequently updated information to applicants, limiting their response to 
fluctuations.11

Without hiding information, the mechanism can reduce misallocation by using a 
randomized queuing policy.12 The FCFS queuing policy is wasteful in that it offers 

9 Examples include the analysis of Caldentey, Kaplan, and Weiss (2009) and Adan and Weiss (2012), and the 
subsequent work of Baccara, Lee, and Yariv (2020). Online Appendix C analyzes the disjoint-queues mechanism 
which holds a separate queue for each item and asks agents to choose a single queue when they join the waiting list. 
The analysis uses a similar Markov chain that tracks imbalance between supply of items and demand from agents. 
Similarly, misallocation occurs when the imbalance is too large, inducing agents to choose to join the shorter queue 
regardless of their preferred item.

10 A different approach is to change the assignment process to avoid the underlying fluctuations. Assigning 
items in large batches can reduce the randomness due to the item arrival process, but requires agents to incur 
additional waiting costs while items accumulate. A lottery that offers agents a chance to get the current item or 
leave unassigned can eliminate dynamic considerations, but removes multiple agents from the waiting list for every 
assigned item and therefore requires that multiple agents join for every assigned item. Such approaches also elim-
inate the useful information provided by endogenously determined waiting times. Evaluation of such approaches 
is left for future work.

11 While such policies can reduce misallocation (which is the focus of the model), providing current information 
to applicants is important for reasons that are beyond the scope of our model. See the discussion in Section III.

12 Randomization is used in practice both implicitly and explicitly. For example, priority for liver transplants is 
determined by a lab test score (Wiesner et al. 2003). Because the score contains some random variation, an organ 
will be randomly assigned to one of the sickest patients. Arnosti and Shi (2017) and van Dijk (2019) analyze 
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a very short expected wait to agents approached in states of low imbalance, but an 
unacceptably long wait in states of high imbalance. By increasing the expected wait 
in low-imbalance states, a randomized queuing policy can decrease the expected 
wait in high-imbalance states. By having an expected wait that varies less with the 
state, the mechanism can offer an expected wait that is indicative of long-run infor-
mation in more states, reducing misallocation due to random fluctuations.

A practical recommendation is the simple service-in-random order (SIRO) queu-
ing policy. A SIRO buffer-queue mechanism has a simple description: agents who 
decline an item are allowed to join a priority pool for their preferred item, and agents 
in each priority pool have an equal probability of receiving an arriving item. We 
characterize the SIRO buffer-queue mechanism as the robustly optimal mechanism. 
This simple randomization does not fully equalize the expected wait across states, 
but it lessens the expected wait fluctuations and therefore reduces the misallocation 
probability and achieves higher welfare in equilibrium than FCFS.

In summary, this paper offers two messages for the practical design of allocation 
through waiting lists. First, although many public-housing authorities have waiting 
list policies that discourage applicants from declining items, the analysis suggests 
agents should be encouraged to decline mismatched items. When the system is over-
loaded, an agent who declines a mismatched item allows the system to search fur-
ther and assign the item to a matching agent. Furthermore, such an agent reduces the 
waiting costs of others by allowing them to be assigned before him. Second, equal-
izing the expected wait agents face when making their choice can improve welfare. 
This can be achieved by the SIRO buffer-queue mechanism or by partial information 
mechanisms. Both are practical mechanisms that offer agents more equal options at 
the time they make their choice, and thus reduce misallocation and improve welfare.

Related Literature

A growing literature studies dynamic assignment markets. Public housing is a 
prominent example of assignment through waiting lists, studied by Kaplan in a series 
of papers (1984, 1986, 1987, 1988). Su and Zenios (2004, 2005, 2006) study the 
assignment of transplant organs through waiting lists and suggest mechanisms that 
induce agents to accept marginal kidneys to reduce wastage of organs. By contrast, 
our findings suggest that if the waiting list is long, patients should be induced to 
decline organs that can be better assigned to other agents. Bloch and Cantala (2017) 
analyze dynamic assignment to agents with idiosyncratic preferences and find an 
FCFS policy maximizes welfare. Schummer (2016) follows up on the current paper 
and derives conditions under which welfare improves when agents are induced to 
decline items. Thakral (2016) argues theoretically and empirically that waiting list 
mechanisms should allow agents to decline items without penalty. Arnosti and Shi 
(2017) analyze trade-offs between efficiency and targeting in dynamic assignments.

Subsequent to the initial version of this paper, a growing empirical literature eval-
uates the allocative efficiency of waiting list mechanisms. Agarwal et  al. (2019) 
empirically study the allocation of kidneys, and van Dijk (2019) and Waldinger 

mechanisms that allocate housing via explicit lotteries. Verdier and Reeling (2022) study the allocation of hunting 
licenses through a mechanism that uses lotteries for tie-breaking. 



3881LESHNO: DYNAMIC MATCHING IN OVERLOADED WAITING LISTSVOL. 112 NO. 12

(2018) study the allocation of public housing. Verdier and Reeling (2022) study the 
dynamic allocation of hunting licenses.

The subsequent work of Baccara, Lee, and Yariv (2020) analyzes a dynamic 
two-sided matching market using a similar Markov chain to capture fluctuating 
imbalances. They find that agents would wait longer than is socially efficient, and 
that welfare can be improved by side payments or batching. Doval and Szentes 
(2018) analyze a dynamic two-sided matching market and characterize when agents 
will be more or less impatient than socially optimal. Doval (2015) develops a notion 
of stability in dynamic environments.

Ünver (2010); Akbarpour, Li, and Gharan (2020); Anderson et  al. (2017); 
Ashlagi et al. (2019); and Das et al. (2015) explore the related issue of thickness 
of dynamic markets. This literature finds that a myopic policy can be optimal under 
some assignment feasibility constraints.

Our model is connected to but differs from standard queuing models. Starting 
with Naor (1969), a large literature considers waiting costs in strategic queuing 
settings; see Hassin and  Haviv (2003) for a survey. In contrast, this paper ana-
lyzes the matching between agents and items. From a technical perspective, our 
stochastic model is closer to the FCFS infinite bipartite matching problem stud-
ied by Caldentey, Kaplan, and Weiss (2009). Our analysis relies heavily on their 
Markovian representation. Adan and Weiss (2012) and Adan et al. (2018) provide 
expression for calculating performance metrics, but conjecture that calculating wel-
fare from these expressions is computationally hard.

The current paper is related to the literature on dynamic mechanism design 
(see Bergemann and Said 2011 for a survey), but differs from it in that we do not 
allow transfers. While expected waiting times serve as prices, the mechanism can 
offer only expected waiting times that can be feasibly generated by the stochastic 
dynamics.13 Section V uses ideas from the literature on robust mechanism design 
(Bergemann and Morris 2005).

Finally, our results demonstrate how fluctuations adversely affect the efficiency 
of resource allocation. De  Vany (1976) and Carlton (1977, 1978) study how 
demand fluctuations affect firms and market behavior. Asker, Collard-Wexler, and 
De Loecker (2014) provide empirical evidence that fluctuations cause misallocation 
and lower productivity.

Organization of the Paper

Section I introduces the model and shows that in an overloaded waiting list, wel-
fare is maximized by maximizing the value of assigned items. Section II analyzes the 
waiting-list-with-declines mechanism and calculates the welfare loss from fluctua-
tions. Section III shows that information design can be used to reduce welfare loss. 
Section IV gives the technical intuition for the results by providing a buffer-queue 
representation for the waiting-list-with-declines mechanism. Section  V leverages 
the technical results to the design of queuing policies that help control expected wait 
fluctuations and reduce welfare loss. It derives the practical SIRO policy. Section VI 

13 The dynamic mechanisms we derive have features similar to Levin (2003). In both problems, the mechanism 
has a finite stock of value (the value of future arrivals) that is used for generating good incentives for agents.
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uses simulations to assess concerns of realized envy and presents heuristics that can 
mitigate such concerns. Section VII concludes.

Appendix A provides the details regarding the Markov chain used in our analysis. 
Online Appendix B discusses nonlinear waiting costs. Online Appendix C analyzes 
the disjoint-queues mechanism and finds similar welfare loss from random fluctua-
tion. Online Appendix D contains omitted proofs. 

I.  Model of Dynamic Matching in Waiting Lists

Each period ​t  ≥  1​ begins with the arrival of an item ​​x​t​​​ and ends when the item 
is assigned to an agent. The item is of kind ​A​ with probability ​​p​A​​​ and of kind ​B​ with 
probability ​​p​B​​  =  1 − ​p​A​​​, independently across periods.14

Agents arrive and enroll in the waiting list according to an exogenous agent arrival 
process, which is discussed below. Agents are infinitely lived, risk neutral, and incur 
a common linear waiting cost ​c  >  0​ per period until they are assigned. We assume 
that registering for the waiting list does not change the agent’s waiting costs.15

Agents are of two types: agents of type ​α​ prefer ​A​ items and agents of type ​β​ pre-
fer ​B​ items. We refer to the agent’s nonpreferred item as a mismatched item. Given 
an item, we refer to agents of the type that prefers the item as matching, and other 
agents are mismatched. Agent types are private information.

Once assigned, agents stop paying the waiting cost and receive a value ​v  >  0​ 
if they are assigned their preferred item, or a value of 0 if they are assigned their 
mismatched item. That is, the utility of an ​α​ agent who is assigned after waiting ​w​ 
periods is ​v − c × w​ if he is assigned an ​A​ item, or ​−c × w​ if assigned a ​B​ item. 
We assume agents break indifferences in favor of their preferred item. Because of 
the reduction in waiting costs, agents prefer receiving a mismatched item to never 
being assigned.

An assignment is ​μ : ​{t  ≥  1}​  →  ​, where ​​ is the set of agents and ​μ​(t)​  ∈  ​ is 
the agent assigned the item ​​x​t​​​. We say the item arriving in period ​t​ is misallocated 
if ​μ​(t)​​ is a mismatched agent for the item ​​x​t​​​. Assignments are final, and assigned 
agents leave the system.16

The mechanism dynamically assigns items as they arrive. At the beginning of 
each period, the mechanism learns which item arrived and may have information 
about the preferences of agents approached in previous periods. We say that an agent 
is unapproached if the agent enrolled in the waiting list, but had no other interaction 
with the mechanism. The mechanism may assign the item given its current informa-
tion or sequentially approach new unapproached agents from the waiting list to learn 
their preferences. We assume all such unapproached agents appear interchangeable 

14 The model and analysis would remain essentially unchanged if item arrivals follow a Poisson processes with 
rates ​​λ​A​​, ​λ​B​​​, as we can normalize time so that ​​λ​A​​ + ​λ​B​​  =  1​ and set ​​p​A​​  =  ​λ​A​​​. Kaplan (1986) argues the arrival 
process of public housing apartments should be modeled as a Poisson process.

15 In particular, the agent’s outside option of opting out of the waiting list is equivalent to never getting assigned 
and entails a utility of ​−∞​.

16 In some applications, misallocated agents may eventually be able to trade their items. Such considerations 
are left out of the analysis in this paper, but can be partially captured by setting the utility of a mismatched agent to 
be ​v′ − c × w​, where ​0  ≤  v′  <  v​ is the value of getting a mismatched item and trading it later (even if trade is 
possible, receiving a mismatched item is strictly worse than receiving the preferred item, because the agent spends 
some time assigned to the mismatched item before trading).
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to the mechanism.17 The probability that an unapproached agent is of type ​α​ is ​​p​α​​​,  
independently across agents. We denote ​​p​β​​  =  1 − ​p​α​​​. We say the system is bal-
anced if ​​p​A​​  = ​ p​α​​​, and in that case, denote ​p  = ​ p​A​​  = ​ p​α​​​.

The mechanisms analyzed in this paper18 approach agents only when seeking to 
assign an arriving item. If all agents in the waiting lists are interchangeable and there 
is always another agent in the waiting list when the mechanism seeks to approach 
one, then these mechanisms are invariant to agents’ arrival times. This observation 
allows us to simplify the model and abstract away from the details of the arrival 
process.

We say that the agent arrival process generates an overloaded waiting list for 
mechanism ​​ if there exists an ​M  >  0​ such that (i) at any point in time, mech-
anism ​​ holds at most ​M​ approached agents that have not been assigned items, 
and (ii) the waiting list always contains at least ​M​ agents. That is, if the waiting 
list is overloaded for mechanism ​​, mechanism ​​ never runs out of new agents 
to approach. For the mechanisms19 and applications considered in this paper, it 
is highly unlikely that the mechanism runs out of new agents to approach.20 By 
neglecting that possibility and assuming that the waiting list is overloaded for the 
mechanisms considered, the analysis can abstract away from further details of the 
agent arrival process.

The goal of the social planner is to allocate the limited supply of items to maxi-
mize total utility. Each assigned item makes two contributions to welfare: (i) agent’s 
value of the item, and (ii) reduction in waiting costs. The following lemma shows 
that any assignment reduces total waiting costs by the same amount.21 Intuitively, 
a public housing apartment generates a reduction of waiting costs equal to one 
month’s rent reduction for each month the apartment is assigned. Any public hous-
ing assignment that immediately assigns all apartments as they arrive generates the 
same reduction in total rent paid by applicants. Since waiting costs are potentially 
unbounded due to the infinite time horizon, the lemma compares assignments up to 
an arbitrary finite time horizon.

LEMMA 1: The difference between the total utility under assignments ​μ​ and ​μ′​ 
up to period ​T​ depends only on the number of misallocations under ​μ​ and ​μ′​ up to 
period ​T​.

17 In particular, the time at which an agent enrolled in the waiting list is not correlated with the agent’s 
preferences.

18 That is, any mechanism equivalent to a buffer-queue mechanism (defined in Section IV).
19 In contrast, for the disjoint-queues mechanism analyzed in online Appendix C, there is no agent arrival pro-

cess that generates an overloaded waiting list. Because the disjoint-queues mechanism approaches each agent as 
they arrive, there are never any unapproached agents in the waiting list. Moreover, the agent arrival process can gen-
erate fluctuations under the disjoint-queues mechanism. Therefore, the analysis of the disjoint-queues mechanism 
cannot similarly abstract away from the specifics of the agent arrival process.

20 Section IV bounds the number of approached agents in the system under buffer-queue mechanisms, implying 
that the waiting list is overloaded for a buffer-queue mechanism if the waiting list always contains at least ​M​ agents, 
where ​M​ is moderately small for plausible parameter values. Because in the applications considered items are 
scarce and there are likely to be many agents waiting for any arriving item, the overloaded waiting list assumption 
is likely to hold.

21 The lemma can be generalized to allow a common discount rate, as in online Appendix B. In the presence of 
discounting, we define social welfare as the sum of agents’ utilities evaluated at time 0.
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By Lemma 1, the social planner can ignore waiting costs when comparing dif-
ferent assignments. Welfare is determined by the number of misallocations, as each 
misallocated item generates a value of 0 instead of ​v​. Therefore, the social planner’s 
objective is to minimize welfare loss from misallocation.

DEFINITION 1: Given an assignment ​μ​, let ​​ξ​t​​  ∈ ​ {0, 1}​​ be an indicator equal to 1 
if the item ​​x​t​​​ is misallocated under ​μ​. The long-run misallocation rate ​ξ  =  ξ​(μ)​​ is 
given by ​ξ  = ​ lim sup​ 

T→∞
​ ​ ​  1 _ T ​ ​∑ t=0​ T  ​​ ​ξ​t​​.​We define welfare loss from misallocation (WFL) to 

be

	​ WFL  =  v × ​(ξ − ​|  ​p​A​​ − ​p​α​​|​)​.​
If ​​p​α​​  ≠ ​ p​A​​​, one of the items is overdemanded and ​​|  ​p​A​​ − ​p​α​​|​​ of agents must be 

assigned to their mismatched item.22 A misallocation rate approximately equal to  
​​|  ​p​A​​ − ​p​α​​|​​ can be obtained if agents are patient (Corollary 1) or if the mechanism 
has full information (Lemma 2). Thus, WFL can be interpreted as the additional loss 
due to the dynamic allocation problem.

As an illustration, we consider two simple mechanisms.

Sequential Assignment without Choice.—To highlight the importance of facilitat-
ing agent choice, consider the sequential assignment mechanism. Each period, the 
sequential assignment mechanism assigns the arriving item to an (arbitrary) unap-
proached agent without offering that agent a choice.23 This mechanism induces a 
misallocation rate equal to ​​ξ​​ SA​  = ​ p​A​​ ​p​β​​ + ​p​B​​ ​p​α​​​. If the system is balanced, the mis-
allocation rate simplifies to ​​ξ​​ SA​  =  2p​(1 − p)​​ and WFL is equal to ​v × 2p​(1 − p)​​.

Full Information Mechanism.—To clarify the mechanism design challenge, con-
sider a simple mechanism that has full information of agent preferences. When an 
item arrives, the full information mechanism searches the entire waiting list for a 
matching agent and assigns the item to a matching agent if there is one. The full 
information mechanism will mismatch agents only if there is no matching agent in 
the waiting list.

LEMMA 2: Suppose the waiting list includes ​M​ agents at any point in time. 
The full information mechanism achieves a misallocation rate ​​ξ​​ 𝐹𝐼​​ such that 
 ​​  lim​ 
M →∞

​​= ​ξ​​ 𝐹𝐼​  = ​ |  ​p​A​​ − ​p​α​​|​​.

II.  The Waiting-List-with-Declines Mechanism

The waiting-list-with-declines mechanism holds a single ordered waiting list. 
Arriving items are offered to the first agent on the waiting list. When an agent is 
offered the current item, the agent can decline the item and keep his position in the 

22 Formally, if there is a constant that upper-bounds the number of agents in the waiting list at any time, ​​|  ​p​A​​ − ​p​α​​|​​  
is the minimal expected misallocation rate among all allocations.

23 Agents who decline the item are removed from the waiting list. If the waiting list is sufficiently long, even if 
an agent can decline an item and reenter the waiting list, the agent will not benefit from doing so.

http://t​​.​We
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waiting list. A declined item is immediately offered to the following agent. Note that 
the mechanism approaches a new agent only when it is trying to assign an arriving 
item that has been declined by all approached agents that are still in the system.

Agents know their position in the waiting list, which we denote by ​k​. This 
assumption implies that agents can fully observe and react to the fluctuating state of 
the system. Section III explores partially informed agents.

Consider an ​α​ type agent who is offered a ​B​ item when he is in position ​k​ (the 
treatment of ​β​ agents who are offered an ​A​ item is symmetric). The agent faces a 
choice between taking ​B​ immediately or declining it and waiting for an ​A​ item. Let ​​
w​k​​​ denote the expected wait for an ​A​ item for an agent in position ​k​. The ​α​ agent 
receives zero utility from taking the ​B​ item immediately and ​v − c × ​w​k​​​ from wait-
ing for an ​A​ item.24 Thus, the ​α​ agent prefers to wait for the preferred ​A​ item if the 
expected wait ​​w​k​​​ is below ​​w – ​  =  v/c​.

The expected wait ​​w​k​​​ serves a similar role to prices in guiding the allocation 
of items. An expected wait ​​w​k​​  ≤ ​ w – ​​ induces ​α​ agents to wait for an ​A​ item. An 
expected wait ​​w​k​​  > ​ w – ​​ rations ​A​ items by inducing ​α​ agent to take the immediate ​B​ 
item. Similarly to monetary transfers in standard competitive equilibrium models, 
waiting costs can only be transferred between agents (as the total waiting costs are 
constant across assignments). In particular, if ​​p​α​​  = ​ p​A​​​, it is socially inefficient for 
an ​α​ agent to take a ​B​ item, as the waiting costs ​​w​k​​​ are transferred to other agents.25

If the planner could choose the expected wait offered to agents, the planner could 
implement the optimal assignment by offering an expected wait above ​​w – ​​ only when 
items need to be rationed. But the planner cannot directly choose the expected wait 
offered to agents. If a ​B​ item is offered to the agent in position ​k​, it has been declined 
by agents in positions ​1, …, k − 1​, who are also waiting for an ​A​ item. Because 
these ​k​ agents are assigned in an FCFS priority order, the expected wait for the agent 
in position ​k​ is the expected number of periods until ​k​ copies of ​A​ arrive, which is ​​
w​k​​  =  k/​p​A​​​. Different ​α​ agents face different expected waits for ​A​ depending on 
their position ​k​ when offered an item. If ​k​ is sufficiently large, an ​α​ agent prefers to 
take the immediate ​B​ item. Agent behavior is summarized in the following lemma.

LEMMA 3: The waiting list with declines has a unique equilibrium, under which an ​
α​ agent in position ​k​ declines a ​B​ to wait for an ​A​ item if and only if   26 ​k  ≤ ​ K​​   A​  = 
​⌊ ​p​A​​ ​w – ​⌋​​. Likewise, ​β​ agents wait for ​B​ items if and only if ​k  ≤ ​ K​​   B​  = ​ ⌊​ p​B​​ ​w – ​⌋​​.

The waiting list with declines incurs misallocation and WFL because agents are 
offered a randomly fluctuating expected wait. Depending on the randomly evolving 
state of the system, some agents will be offered a higher expected wait for ​A​ while 
others may be offered a higher expected wait for ​B​. As the mechanism accumulates ​
α​ agents who declined a ​B​, it approaches agents with higher ​k​ who are offered a 
higher expected wait ​​w​k​​​. Even if ​​p​α​​  = ​ p​A​​​, the state of the system randomly evolves 

24 Note that an agent who declined a ​B​ once will prefer to decline all subsequent offers of ​B​ items to wait for an ​
A​, because past costs are sunk and the expected wait for an ​A​ can only decrease. Therefore, it is immaterial whether 
an agent who declined a ​B​ item will be offered ​B​ items again.

25 If ​​p​α​​  >  ​p​A​​​, the assignment must ration ​A​ items and assign ​​p​α​​ − ​p​A​​​ of ​α​ agents to a ​B​, but it is socially inef-
ficient to have more than a fraction ​​p​α​​ − ​p​A​​​ of ​α​ agents take a ​B​ item.

26 We use the notation ​​⌊x⌋​  =  max​{n  ∈  ℤ | n  ≤  x}​​.
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over time, and the expected wait offered to agents randomly fluctuates. When the 
mechanism randomly accumulates more than ​​K​​   A​​ agents waiting for an ​A​ item, it 
offers an expected wait that exceeds ​​w – ​​, inducing ​α​ agents to choose mismatched 
items.

THEOREM 1: The waiting list with declines has a unique equilibrium, under which 
welfare loss when ​​p​α​​  ≠ ​ p​A​​​ is given by

 ​ ​WFL​​ WLWD​  =  v​(​ξ​​ 𝑊𝐿𝑊𝐷​ − ​|  ​p​α​​ − ​p​A​​|​)​

	 =  v × 2​|  ​p​α​​ − ​p​A​​|​​​{​​[​​(  ​p​α​​/​p​A​​)​​​ ​K​​   A​+1​​​(  ​p​β​​/​p​B​​)​​​ −​(​K​​   B​+1)​​]​​​ 
sgn​(  ​p​α​​−​p​A​​)​

​ − 1}​​​ 
−1

​,​

with ​​K​​   A​  = ​ ⌊ ​p​A​​ ​w – ​⌋​​ and ​​K​​   B​  = ​ ⌊ ​p​B​​ ​w – ​⌋​​. When ​​p​α​​  = ​ p​A​​  =  p​, welfare loss simplifies 
to

	​ ​WFL​​ WLWD​  =  v ​ 
2p​(1 − p)​

  ________________   
​(1 − p)​​K​​   A​ + p​K​​   B​ + 1

 ​.​

The proof of Theorem 1 calculates WFL by solving for the stationary distribution 
in closed form. Section IV provides the intuition and technical analysis.

The two following corollaries show how WFL varies with agent preferences. 
First, misallocation decreases as the cost of waiting ​c​ decreases. When agents are 
more patient ​​w – ​  =  v/c​ is larger, and ​​K​​   A​, ​K​​   B​​ are larger. In other words, expected 
waiting times can fluctuate within a larger range without exceeding ​​w – ​​ and causing 
misallocation.

COROLLARY 1: As the cost of waiting ​c​ decreases, ​​ lim​ 
c→0

​​ ​ξ​​ WLWD​  = ​ |  ​p​A​​ − ​p​α​​|​​ 
and ​​ lim​ 

c→0
​​ ​WFL​​ WLWD​  =  0​.

Second, when the system is balanced (i.e., ​​p​α​​  = ​ p​A​​​), WFL can be substantial 
even if mismatched items are undesirable. As ​v​ increases, agents are willing to 
wait longer for their preferred item, reducing the misallocation rate. However, as ​
v​ increases, each misallocation is a greater loss. Taken together, these two counter-
vailing effects roughly cancel each other, ​​ξ​​ WLWD​  ≈  1/​w – ​​ and WFL is approximately 
equal to ​v × 1/​w – ​  ≈  c​.

COROLLARY 2: If the system is balanced, we have that ​​  lim​ 
v→∞​​ ​WFL​​ WLWD​  →  c​.  

If ​​p​α​​  ≠ ​ p​A​​​, we have that ​​  lim​ 
v→∞​​ ​ξ​​ WLWD​  = ​ |  ​p​A​​ − ​p​α​​|​​ and ​​  lim​ 

v→∞​​ ​WFL​​ WLWD​  →  0​.

Figure 1 depicts the welfare loss under the waiting list with declines (labeled FCFS). 
When ​v​ is close to zero, the preferred item and the mismatched item are almost iden-
tical; little loss results from misallocation, and agents do not wait for their preferred 
item. As ​v​ increases, each misallocation becomes more costly, but agents are willing 
to wait for their preferred item at higher positions, reducing the misallocation rate. 
Discontinuity points correspond to values for which agents in some position are indif-
ferent between waiting for their preferred item and taking an immediate mismatched 
item.



3887LESHNO: DYNAMIC MATCHING IN OVERLOADED WAITING LISTSVOL. 112 NO. 12

Figure 1 also provides a comparison with an alternative mechanism with lower 
welfare loss analyzed in Section  V: the SIRO buffer queue. Under the SIRO 
buffer-queue mechanism, agents who decline an item join a priority pool for their 
preferred item, and agents in the pool have an equal probability of receiving an 
arriving item. By doing so, the expected wait offered to agents varies less with the 
agent’s position, as shown in Figure 2. This allows the SIRO buffer-queue mecha-
nism to offer more agents an expected wait that is below ​​w – ​​ and reduce misallocation 
and welfare loss.

III.  Information Design

Providing information to agents about their expected wait is useful for rationing 
overdemanded items (e.g., when ​​p​α​​  ≠ ​ p​A​​​), but the previous analysis shows that 
revealing the fluctuating expected wait leads to misallocations. By hiding the agent’s 
position, the mechanism can control the agent’s perceived expected wait and reduce 
welfare loss.

Formally, consider a partial information mechanism that is identical to the wait-
ing list with declines except (i) agents who decline an item are not offered that 
item again,27 and (ii) agents may be given partial information about their position. 
Let ​S​ denote the state space of the mechanism (see Lemma 4) and let ​𝔖​ denote a 
set of signals. A partial information mechanism commits to information disclosure  

27 Under full information, it is immaterial whether agents who previously declined a ​B​ item are offered a ​B​ again 
because the expected wait for the preferred item can only decrease over time. Che and Tercieux (2020) consider a 
partial information setting in which agents may learn over time and may change their decision with time.

Figure 1

Note: Equilibrium WFL for ​​p​α​​  = ​ p​A​​  =  1/2, c  =  1​, and varying values of ​v​ under the waiting list with declines 
(labeled FCFS) and the SIRO buffer-queue mechanism.
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​ϒ : ​{A, B}​ × S  →  Δ​(𝔖)​​ that discloses a signal given the state of the system and the 
current item kind. An ​α​ agent who is offered a ​B​ item and observes the disclosed 
signal ​𝔰  ∈  𝔖​ believes that the expected wait for ​A​ is28 ​​w​𝔰​​  =  E​[​w​​k ̃ ​​​ ∣ 𝔰]​​, and will 
prefer to wait for an ​A​ if ​​w​𝔰​​  ≤ ​ w – ​​.

As an illustration, consider an ​α​ agent in the setting ​​p​α​​  = ​ p​A​​  =  1/2​, ​​w – ​  =  6​ 
depicted in Figure 2. Under full disclosure, the ​α​ agent is willing to decline a ​B​ and 
wait for an ​A​ in positions 1, 2, or 3. But an agent in position 4 prefers to take an 
immediate ​B​ as ​​w​4​​  =  4/​p​A​​  =  8  > ​ w – ​​. Because the expected wait in position 2 is 
equal to ​​w​2​​  =  2/​p​A​​  =  4​ and is strictly below ​​w – ​​, an ​α​ agent is willing to wait for 
a ​B​ if he believes that his position is equally likely to be 2 or 4. That is, by hiding 
information the mechanism can induce an ​α​ agent in position 4 to wait for an ​A​ and 
avoid misallocation.

For general ​​p​α​​  = ​ p​A​​​ and ​​w – ​​, a simple information disclosure allows the mecha-
nism to minimize welfare loss.

THEOREM 2: Suppose that ​​p​α​​  = ​ p​A​​  =  p​, that ​2  ​p​A​​ ​w – ​, 2  ​p​B​​ ​w – ​​ are integers,29 and 
assume that agents do not know their position ​k​. Consider the information disclosure ​​

28 We assume that agents know the steady state distribution of the system and infer the distribution of their 
possible position ​​k ̃ ​​ given the signal ​𝔰​ to calculate their expected wait ​​w​𝔰​​  =  E​[​w​​k ̃ ​​​ ∣ 𝔰]​​.

29 If ​2 ​p​A​​ ​w – ​​ is not an integer, the information disclosure that minimizes welfare loss sends a randomly selected 
message to agent in position ​​⌊2 ​p​A​​ ​w – ​⌋​​. Let the message space be ​S  =  ​{“wait”, “mismatch”}​​. Agents in positions 
​k  <  ​⌊2 ​p​A​​ ​w – ​⌋​​ are sent the message “wait.” Agents in positions ​k  >  ​⌊2 ​p​A​​ ​w – ​⌋​​ are sent the message “mismatch.” 
Agents in position ​k  =  ​​⌊​​2 ​p​A​​​w – ​​⌋​​​​ are sent the message “wait” with probability ​q​ and the message “mismatch” with 

Figure 2

Notes: Equilibrium expected wait ​​w​k​​​ for agent in position ​k​ under the waiting list with declines (black squares) and 
the SIRO buffer-queue mechanism (green triangles). Parameters used are ​​p​α​​  = ​ p​A​​  =  1/2, c  =  1,​ and ​v  =  6​. 
The dotted line indicates ​​w – ​  =  v/c  =  6​. In equilibrium, agents wait for their preferred item in positions ​k  ≤  3​ 
under the waiting list with declines, or positions ​k  ≤  4​ under the SIRO buffer queue. Markers for positions in 
which agents are not willing to wait for their preferred item are shaded.
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ϒ​​ ∗​​ under which agents offered an arriving ​B​ item are only informed whether ​k  ∈ ​
{1, …, 2 ​p​A​​​w – ​ − 1}​​ or ​k  > ​ K​ A​ ∗ ​  =  2 ​p​A​​​w – ​ − 1​ (and symmetrically for an arriving ​A​ 
item). Under information disclosure ​​ϒ​​ ∗​​, there is a unique equilibrium that yields the 
minimal welfare loss of any equilibrium under any information disclosure policy. 
Welfare loss under information disclosure ​​ϒ​​ ∗​​ is equal to

	​ ​WFL​​ WLWD:​ϒ​​ ∗​​  =  v ​ 
2 p​(1 − p)​

  ________________   
​(1 − p)​​K​ A​ ∗ ​ + p​K​ B​ ∗ ​ + 1

 ​  =  c/2.​

Under the information disclosure ​​ϒ​​ ∗​​, an ​α​ agent who is informed that his posi-
tion is ​k  ≥ ​ ⌊2 ​p​A​​​w – ​⌋​​ prefers to take the current ​B​ item, as the expected wait for ​
A​ is above ​​w – ​​. Under the stationary distribution, an ​α​ agent who is informed that  
​k  < ​ ⌊2 ​p​A​​​w – ​⌋​​ is equally likely to be in either of the positions ​1, …, ​⌊2 ​p​A​​​w – ​⌋​ − 1​, 
and thus believes his expected wait is ​​⌊2 ​p​A​​​w – ​⌋​/2 ​p​A​​  ≤ ​ w – ​​ and prefers to wait for an ​
A​. For an illustration, see Figure 5. A similar approach can be used when ​​p​α​​  ≠ ​ p​A​​​.

This partial information mechanism eliminates approximately half of the welfare 
loss of the waiting list with declines. By equalizing the expected wait offered to 
agents, the mechanism can offer an acceptable expected wait to more agents.

The partial information disclosure ​​ϒ​​ ∗​​ does not eliminate all welfare loss. For 
example, in the setting depicted in Figure 2, an ​α​ agent in position 6 will take an 
immediate ​B​ item. Because the mechanism reveals some information by disclosing 
the currently available item, no partial information mechanism can achieve lower 
welfare loss. For example, if agents in position 6 are given a signal to wait for an  
​A​, the average expected wait of agents who receive the signal will be above  
​​w – ​  =  6​, and some ​α​ agents would have preferred to take an immediate ​B​ item.

A mechanism that hides all information, including which item is currently 
offered,30 can induce all agents to choose their preferred item if the system is bal-
anced and agents hold correct steady-state beliefs. However, hiding all information 
may be problematic in practice for reasons that are beyond the scope of the model.31 
For example, the mechanism may want to provide information to agents to ensure 
they are not misinformed, or to reduce agents’ incentive to collect information from 
other sources. In addition, the planner may want to provide agents with information 
to help manage expectations. Similar concerns arise for partial information mecha-
nisms as well. First, in many situations the planner will have imperfect control over 
the information available to agents. Under partial information disclosure, agents 
will have an incentive to collect information about their position from external 
sources, such as online forums. Equity concerns may arise, as agents with access to 
better information will receive more favorable outcomes. Second, to implement ​​ϒ​​ ∗​​ 
the planner needs to know the environment parameters, while the waiting list with 

probability ​1 − q​, where ​q​ is selected so that the expected wait conditional on receiving a “wait” message is equal 
to ​​w – ​​.

30 That is, the mechanism asks agents to declare their preference without knowing the currently offered item. If 
agents are mismatched, then they join the queue for their preferred item type.

31 In addition, such a mechanism can accumulate an unbounded number of agents in the buffer queue, and will 
not satisfy the overloaded waiting list assumption. Because the state follows an unbiased random walk, the expected 
wait for one item can grow unbounded. Moreover, the system can spend an arbitrarily long time in states in which 
agents face a long wait for ​A​ items while ​B​ items are offered for immediate assignment, making it difficult to hide 
the difference between waiting times.
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declines is parameter free. Moreover, the planner will need to adjust the mechanism 
with any change in item arrival rates or agent preferences. Third, the behavior of 
agents depends on their beliefs about preferences of other agents and the stationary 
distribution of the system. For example, if the planner implements ​​ϒ​​ ∗​​ for ​​p​α​​  = ​
p​A​​  =  1/2​, an ​α​ agent who believes ​​​p ˆ ​​α​​  =  3/4​ will refuse to wait for an ​A​.

In practice, the mechanism should strike a balance between the need to provide 
agents with useful information and hiding the system’s fluctuations. This can be 
achieved by disclosing historic expected waits that are updated sufficiently fre-
quently to be relevant and sufficiently infrequently to avoid random fluctuations.

IV.  Analysis via a Buffer-Queue Representation

This section introduces the class of buffer-queue mechanisms that allows for a 
tractable representation and analysis of the waiting-list-with-declines mechanism. 
This class of mechanisms is also useful for considering alternative mechanisms that 
use different queuing priorities to control expected wait fluctuations. Section V dis-
cusses incentives in this class of mechanisms and leverages the results in this sec-
tion to derive improved incentive compatible mechanisms.

A buffer-queue mechanism represents an ​α​ agent declining a ​B​ to wait for an ​A​ 
as having the ​α​ agent join a buffer queue for ​A​ items. A buffer-queue mechanism 
maintains a buffer queue for ​A​ and a buffer queue for ​B​. All approached agents who 
previously declined a ​B​ item are held in the ​A​ buffer queue until assigned. Arrivals 
of ​A​ items are assigned to an agent in the ​A​ buffer queue according to the queuing 
policy (for example, Lemma 5 shows that the waiting list with declines is equivalent 
to a buffer queue with the FCFS queuing policy). If an ​A​ item arrives when the ​A​buf-
fer queue is empty, the mechanism approaches new agents (skipping agents in the ​B​ 
buffer queue, if there are any) and offers them a choice between taking the immediate ​
A​ item or joining the ​B​ buffer-queue. Arrivals of ​B​ items are treated symmetrically.

The buffer-queue mechanism representation offers several benefits. First, this 
representation provides a natural state space that is used in the analysis to track the 
stochastic evolution of the system and calculate the stationary distribution. Second, 
this representation allows us to generate different schedules of expected wait by 
specifying a queuing policy ​φ​ that determines the relative priority among agents 
who declined items.

Last, the representation allows us to specify a direct mechanism, in which agents 
make their choice by reporting their type. The mechanism determines in each state 
(subject to incentive constraints) whether a mismatched agent is to join the buffer 
queue to wait for the preferred item, or is to be assigned an immediate mismatched 
item. We consider a simple parameterization, under which mismatched ​α​ agents are 
to join the ​A​ buffer queue for their preferred item if it holds less than ​​K​​  A​​ agents. We 
refer to ​​K​​  A​​ as the maximal buffer-queue size and say the ​A​ buffer queue is full if it 
holds ​​K​​  A​​ agents. Similarly, the mechanism specifies ​​K​​  B​​ for the ​B​ buffer queue.

DEFINITION 2: A buffer-queue mechanism ​  =  (​K​​  A​, ​φ​​  A​, ​K​​  B​, ​φ​​  B​ )​ is a 
dynamic mechanism parameterized by two buffer-queue policies: ​(​K​​  A​, ​φ​​  A​ )​ for the 
buffer-queue holding agents waiting for ​A​ items, and ​(​K​​  B​, ​φ​​  B​ )​ for the buffer-queue 
holding agents waiting for ​B​ items.
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To simplify notation, we restrict attention to queuing policies that track and pri-
oritize agents based on their position in the buffer queue. Agents who join the buffer 
queue take the first empty position, and move forward when an agent ahead of them 
is assigned. This class is sufficiently general to capture mechanisms such as the 
waiting list with declines, and the SIRO buffer queue.

DEFINITION 3: A buffer-queue policy ​​(K, φ)​​ is given by the maximal buffer-queue 
size ​K  ∈  ℕ​, and nonnegative assignment probabilities ​φ  = ​​ {φ​(k, i)​}​​

1≤i≤k≤K
​​​ such 

that ​​∑ i=1​ k  ​​ φ​(k, i)​  =  1​ for all ​1  ≤  k  ≤  K​.

That is, if an item arrives when there are ​k​ agents in the ​A​ buffer queue, it will be 
allocated to the agent in position ​i​ with probability ​φ​(k, i)​​. This class includes com-
mon queuing policies. The FCFS queuing policy is equivalent to 

	​ ​φ​​ FCFS​​(k, i)​  = ​ {​1,​  if i  =  1;​  
0,

​ 
if i  ≠  1;

​​​. 

The last-come-first-served (LCFS) queuing policy is equivalent to 

	​ ​φ​​ LCFS​​(k, i)​  = ​ {​1,​  if i  =  k;​  
0,

​ 
if i  ≠  k;

​​​.

A. Dynamics and Welfare

The evolution of a buffer-queue mechanism is a stochastic process due to the ran-
dom arrival of items and agent types. The following analysis describes the dynamics, 
assuming all agents report their type truthfully, and calculates the implied misallo-
cation rate.

LEMMA 4: The evolution of a buffer-queue mechanism ​  = ​ (​K​​  A​, ​φ​​  A​, ​K​​  B​, ​φ​​  B​)​​ 
is a stochastic process that is generated by an ergodic Markov chain over the state 
space

	​ S  = ​ {−​K​​  B​, …, −1, 0, 1, 2, …, ​K​​  A​}​,​

Figure 3. Illustration of the Markov Chain ​S​

Notes: Transitions toward state 0 correspond to an assignment of the current item to an agent on the respective 
buffer-queue. Transitions away from 0 correspond to the mechanism offering the current item to (potentially mul-
tiple) new agents.

−KB −2 −1 0 1 2 KA
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where ​k  ≥  0​ corresponds to ​k​ agents of type ​α​ waiting in the ​A​ buffer queue and ​
k  ≤  0​ corresponds to ​​|k|​​ agents of type ​β​ waiting in the ​B​ buffer queue. At most 
one buffer queue is nonempty at any given time. Each transition of the Markov chain 
corresponds to one period and one assigned item.

The state of the system can be thought of as the imbalance between the supply 
of arriving items and the demand from approached agents. The maximal sizes of 
the buffer queues give the range of imbalances the mechanism can sustain, and the 
mechanism is forced to misallocate items when the imbalance exceeds the range ​​
{−​K​​  B​, …, ​K​​  A​}​​. Within this range, imbalance randomly fluctuates.

Transition probabilities are calculated in Appendix A from the arrival probabil-
ities of items and choices of agents. To calculate the stationary distribution, we 
use the Markov chain ​​S ˆ ​​, which includes all the original states of ​S​ as well as two 
additional sets of states ​​S​​  A​​ and ​​S​​   B​​. This construction builds on the Markov chain 
introduced by Caldentey, Kaplan, and Weiss (2009). A state ​​(k, B)​  ∈ ​ S​​   B​​ indicates ​k​ 
agents of type ​α​ are in the ​A​ buffer queue, and a current ​B​ item is about to be offered 
to a new agent. Similarly, a state ​​(−k, A)​  ∈ ​ S​​  A​​ indicates ​k​ agents of type ​β​ are in 
the ​B​ buffer queue, and a current ​A​ item is about to be offered. The original states are 
relabeled as ​​(k, ϕ)​  ∈ ​ S​​  ϕ​  ≅  S​. Each period starts and ends in a state in ​​S​​  ϕ​​.

The Markov chain on ​​S ˆ ​​ is depicted in Figure 4. Appendix A contains the full anal-
ysis of the Markov chain and related proofs. It allows us to calculate the stationary 
distribution over ​​S ˆ ​​ and the misallocation rate.

THEOREM 3: Let ​  = ​ (​K​​  A​, ​φ​​  A​, ​K​​  B​, ​φ​​  B​)​​ be a buffer-queue mechanism. If ​​p​α​​  ≠ ​
p​A​​​, the misallocation rate under ​​ when agents are truthful is equal to

	​ ξ  = ​ (  ​p​A​​ − ​p​α​​)​ ​ 
​​(  ​p​β​​/​p​B​​)​​​ ​K​​   B​+1​ + ​​(  ​p​α​​/​p​A​​)​​​ ​K​​  A​+1​

   ___________________   
​​(  ​p​β​​/​p​B​​)​​​ ​K​​   B​+1​ − ​​(  ​p​α​​/​p​A​​)​​​ ​K​​  A​+1​

 ​.​

If ​​p​α​​  = ​ p​A​​  =  p​, the misallocation rate ​ξ​ is

	​ ξ  = ​ 
2 p​(1 − p)​

  ________________   
​(1 − p)​​K​​  A​ + p ​K​​  B​ + 1

 ​.​

Moreover, ​ξ​ is monotonically decreasing in ​​K​​  A​, ​K​​  B​,​ and

	​ ​  lim​ 
​K​​  A​→∞

​​ ξ  = ​   lim​ 
​K​​   B​→∞

​​ ξ  = ​ | ​p​A​​ − ​p​α​​|​.​

The misallocation rate for ​​p​α​​  = ​ p​A​​  =  p​ has an intuitive interpretation. If an 
item arrives and the respective buffer queue is full, the mechanism assigns the item 
to the next approached agent regardless of their type. The numerator ​2 p​(1 − p)​​ 
captures the probability this assignment results in misallocation, and it is equal to 
the misallocation rate in the sequential assignment without choice mechanism. If the 
respective buffer queue is not full, misallocation is avoided by having a mismatched 
agent join the buffer queue. When ​​K​​  A​, ​K​​  B​​ are larger it is less likely that the buffer 
queue is full, which is captured by the denominator ​​(1 − p)​​K​​  A​ + p ​K​​  B​ + 1​ that is 
increasing in ​​K​​  A​, ​K​​  B​​.
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Theorem 1 is a direct corollary of Theorem 3 and the following lemma.

LEMMA 5: The waiting list with declines has a unique equilibrium which is 
equivalent to the buffer-queue mechanism ​  = ​ (​K​​  A​, ​φ​​ FCFS​, ​K​​  B​, ​φ​​ FCFS​)​​ with ​​K​​  A​​  
= ​​ ⌊​ p​A​​​w – ​⌋​​ and ​​K​​  B​  = ​ ⌊ ​p​B​​ ​w – ​⌋​​.

V.  Controlling Expected Wait Fluctuations via Queuing Policy Design

The preceding analysis shows that maximizing welfare is equivalent to mini-
mizing misallocation. To incentivize agents to avoid misallocation, the mechanism 
needs to offer an acceptable expected wait. Figure 1 shows that using a different 
queue design can allow the mechanism to control the expected wait offered to agents 
to maintain an acceptable expected wait under a wider range of fluctuations and 
reduce welfare loss. This section analyzes possible queue designs to derive an opti-
mal design and give a characterization of the SIRO queuing policy as the robustly 
optimal policy.

Formally, given a mechanism ​  = ​ (​K​​  A​, ​φ​​  A​, ​K​​  B​, ​φ​​  B​)​​, let ​​w​ k​  A​​ denote the implied 
expected wait for an agent who declines a ​B​ and joins position ​k​ in the ​A​ buffer 
queue.32 Let ​​w​ k​  B​​ be defined symmetrically. To simplify notation, we assume ​​
w – ​  ≥  max​{1/​p​A​​, 1/​p​B​​}​​ throughout this section, ruling out trivial parameters in 
which agents are unwilling to wait for the first arrival of their preferred item.

LEMMA 6: The expected waits ​​​{​w​ k​  A​}​​ k=1​ 
​K​​  A​ ​​ depend only on ​​(​K​​  A​, ​φ​​  A​)​​, and ​​p​α​​, ​p​A​​​ (and 

symmetrically for ​​w​ k​  B​​  ).

32 That is, ​​w​ k​  A​​ is the expected number of periods from when the agent joins the buffer queue until he is assigned 
an ​A​ item, conditional on joining the ​A​ buffer queue when it holds ​k − 1​ agents, and assuming the following agents 
truthfully report their type.

Figure 4

Notes: The Markov chain over state space ​​S ˆ ​​. Arrows labeled ​A, B​ correspond to the arrival of that item. Arrows 
labeled ​α, β​ correspond to an offer to a new agent of that type, assuming agents are truthful. Dashed lines are transi-
tions that assign the current item, and dotted lines indicate the current item is assigned to a potentially mismatched 
agent.
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Therefore, the following is well defined.

DEFINITION 4: A buffer-queue policy ​​(K, φ)​​ with expected 
waits ​​​{​w​k​​}​​ k=1​ K  ​​ is incentive compatible (IC) if ​​w​k​​  ≤ ​ w – ​​ for all ​k  ≤  K​.  
A buffer-queue mechanism ​  = ​ (​K​​  A​, ​φ​​  A​, ​K​​  B​, ​φ​​  B​)​​ is IC if both ​​(​K​​  A​, ​φ​​  A​)​​ and  
​​(​K​​  B​, ​φ​​ B​)​​ are IC.

Under an IC mechanism, it is an equilibrium for all agents to report their type 
truthfully.33 The following lemma uses Little’s law to show that the average expected 
wait depends only on ​K​ and is independent of the queuing policy ​φ​.

LEMMA 7: Let ​​(K, φ)​​ be a buffer-queue policy. Then, independently of ​φ​, the aver-
age expected wait for an agent who joins the buffer-queue is

	​ W​(K)​  =  E​[​w​​k ̃ ​​​]​  = ​
⎧
 

⎪

 ⎨ 
⎪
 

⎩
​
​ K + 1 _ 2p  ​,

​ 
if ​p​α​​  = ​ p​A​​  =  p;

​     
​ K _ ​p​A​​ ​ + ​  1 _ ​p​A​​ − ​p​α​​ ​ + ​ 1 _ ​p​A​​ ​ ​ 

K ___________ 
​​(  ​p​α​​/​p​A​​)​​​ K​ − 1

 ​,
​ 

if ​p​α​​  ≠ ​ p​A​​.
 ​​ ​

Moreover, if ​​(K, φ)​​ is an IC buffer-queue policy, then ​W​(K)​  ≤ ​ w – ​​.

PROOF:
By Little’s law (Little 1961), if ​W  =  E​[​w​​k ̃ ​​​]​​ is the average time an agent spends in 

the buffer queue, ​L​ is equal to the average number of agents in the buffer queue con-
ditional on the buffer queue being nonempty, and ​λ​ is the arrival rate at which agents 
join/leave the buffer queue, then we have that ​L  =  λW​. The expected number of 
agents that leave the buffer queue in any given period is ​λ  = ​ p​A​​​. If ​​p​α​​  = ​ p​A​​  =  p​,  
the buffer-queue is equally likely to hold any number of agents ​k​ for ​1  ≤  k  ≤  K​ 
(by Lemma 10 in Appendix A), and the average number of agents in the buffer 
queue is ​L  = ​ (K + 1)​/2​. Therefore, ​E​[​w​​k ̃ ​​​]​  =  W  =  L/λ  = ​ (K + 1)​/2 p​,  
which is independent of ​φ​. Last, for any IC buffer-queue policy ​​(K, φ)​​ we have  
​W​(K)​  =  E​[​w​​k ̃ ​​​]​  ≤ ​ max​ k≤K​​ ​w​k​​  ≤ ​ w – ​​. The case ​​p​α​​  ≠ ​ p​A​​​ is proved similarly in 
online Appendix D. ∎

Intuitively, Lemma 7 shows that a mechanism with higher ​K​ (that is, avoiding 
misallocation under states of greater imbalance) needs to offer some agents a longer 
expected wait. The FCFS policy offers agents the minimal feasible expected wait at 
the current state, which is low in low states but increases with the state. A differ-
ent queue policy can distribute the expected wait more equally and offer agents an 
expected wait below ​​w – ​​ even under greater imbalance. But if ​E​[​w​​k ̃ ​​​]​ > ​ w – ​​, it is not pos-
sible to redistribute the expected wait so that all agents face an expected wait below ​​w – ​​. 
We thus obtain a lower bound for the welfare loss of any IC buffer-queue mechanism.

33 Every agent makes at most a single choice. An ​α​ agent will always take a current ​A​ item to attain the max-
imal possible utility. Because immediate assignment to ​B​ is preferable to never being assigned, the mechanism 
can force the agent to take the current ​B​ item. If the current item is a ​B​ item and the ​A​ buffer queue is not full, the 
agent can choose whether to truthfully reveal he is mismatched and wait for a future ​A​, or misreport his type and 
take the current ​B​ item. Given expected wait ​w​, the ​α​ agent prefers joining the ​A​ buffer queue if ​v − c × w  ≥  0​ 
or ​w  ≤  v/c  =  ​w – ​​.



3895LESHNO: DYNAMIC MATCHING IN OVERLOADED WAITING LISTSVOL. 112 NO. 12

COROLLARY 3: Suppose that ​​p​α​​  = ​ p​A​​  =  p​. Then the welfare loss under any IC 
buffer-queue mechanism is at least

	​ v ​ 
2 p​(1 − p)​
  _______________________   

​(1 − p)​​⌊2 p​w – ​⌋​ + p​⌊2​(1 − p)​​w – ​⌋​
 ​.​

A. The Robust SIRO Queuing Policy

The SIRO policy is a simple alternative to FCFS. By giving all agents in the buffer 
queue equal probability of receiving an arriving item, the SIRO policy reduces the 
variation in expected wait. Figure 5 provides an illustration. Intuitively, the expected 
wait ​​w​K​​​ for the agent joining the last position ​K​ is lower when the last agent is given 
equal priority. But while there is less variation in ​​w​k​​​ under SIRO than under FCFS, 
the expected waits ​​w​k​​​ under SIRO are strictly increasing in ​k​ because the probability 
of getting assigned is lower when there are more agents in the buffer queue.

This section gives a characterization showing that the SIRO policy maximizes 
welfare subject to a robust incentive compatibility constraint. A rough intuition 
is that the policy wants to give higher assignment priority to agents in the last 
positions to reduce ​​w​k​​​ for high ​k​. This requires reducing the priority of agents 
who entered the buffer queue from the first positions, and increases the expected 
wait of such agents in the event that many agents join the buffer queue behind 
them.34 On the other hand, agents who join the first positions may believe that 
additional agents will join after them, and to be robustly incentive compatible the 
mechanism needs to ensure that such pessimistic agents are willing to join the first 
positions. Giving agents in all positions equal assignment priority balances the 
two considerations.

Formally, given a mechanism ​  = ​ (​K​​  A​, ​φ​​  A​, ​K​​  B​, ​φ​​  B​)​​, let ​​w​ k,σ​  A  ​​ denote the sub-
jective expected wait of an agent with belief ​σ​ who declines a ​B​ and joins position ​
k​ in the ​A​ buffer queue (​​w​ k,σ​  B  ​​ is defined symmetrically). Define a general belief ​σ​ 
as follows.35 Label the following agents by the order in which they are approached 
and offered the option to join the ​A​ buffer queue. The agent’s belief ​σ : ℕ × ℕ  → ​
[0, 1]​​ specifies the probability ​​σ​ℓ​​​(k)​​ that the ​ℓ​th agent will report to be of type ​α​ and 
join the ​A​ buffer queue conditional on being offered position ​k​.36 The belief that 
corresponds to all agents being truthful is given by ​​σ​ℓ​​​(k)​  ≡ ​ p​α​​​ for all ​ℓ  ≥  1​ and ​
k  ≤ ​ K​​  A​​. The subjective expected wait ​​w​ k,σ​  A  ​​ is calculated by drawing future agents 
independently according to ​σ​.

The following lemma generalizes Lemma 6.

34 For example, the first agent to join an LCFS queue faces a long expected wait if many subsequent agents join.
35 We maintain that agents have correct beliefs about the item arrival rates, as different beliefs about item arrival 

rates scale the expected waits ​​w​k​​​.
36 That is, ​​σ​1​​​(k)​​ gives the probability that the next agent approached will report to be an ​α​ agent and join 

the buffer queue conditional on seeing the state where ​k − 1​ agents are in the buffer queue. This formulation 
indexes agents by the order in which they are approached (instead of referring to agents by name) allowing a more 
tractable formulation of belief updates.
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LEMMA 6’: The expected waits ​​​{​w​ k,σ​  A  ​}​​ 
k=1

​ ​K​​  A​ ​​ depend only on ​​(​K​​  A​, ​φ​​  A​)​​, the belief ​σ​, 
and ​​p​A​​​ (and symmetrically for ​​w​ k,σ​  B  ​​).

Therefore, the following is well defined.

DEFINITION 5: A buffer-queue policy ​​(K, φ)​​ with expected waits ​​​{​w​k​​}​​ k=1​ K  ​​ is  
belief-free incentive compatible (BF-IC) if ​​w​k,σ​​ ≤ ​ w – ​​ for all ​k ≤  K​ and any belief  
​σ​. A buffer-queue mechanism ​  = ​ (​K​​  A​, ​φ​​  A​, ​K​​  B​, ​φ​​  B​)​​ is BF-IC if both ​​(​K​​  A​, ​φ​​  A​)​​ and ​​
(​K​​  B​, ​φ​​ B​)​​ are BF-IC.

Figure 5

Notes: Expected wait for agents who join the buffer queue to wait for their preferred item under various queuing 
policies for ​​p​α​​  = ​ p​A​​  =  1/2​. The dotted line indicates ​​w – ​  =  6​.
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In other words, a mechanism is BF-IC if agents who wait for their preferred item 
face an acceptable subjective expected wait regardless of their beliefs. In particular, 
BF-IC implies that an agent should not regret joining the buffer queue even if sub-
sequent agents join the buffer queue after him. The following theorem shows that 
the simple SIRO buffer-queue mechanism obtains the lowest possible welfare loss 
of any BF-IC mechanism. We denote ​​κ​​ ∗​​(​w – ​, ​p​α​​, ​p​A​​)​  =  sup​{K′ ∣ W​(K′)​  ≤ ​ w – ​}​​ using 
the average expected wait function ​W​( · )​​ defined in Lemma 7.

THEOREM 4: Let ​​​​ ⋆​  = ​ (​K​​  A​, ​φ​​ 𝑆𝐼𝑅𝑂​, ​K​​  B​, ​φ​​ 𝑆𝐼𝑅𝑂​)​​ be the SIRO buffer-queue 
mechanism given by ​φ​(k, i)​  =  1/k​ for any ​i  ≤  k​, ​​K​​  A​  = ​ κ​​ ∗​​(​w – ​, 1, ​p​A​​)​​, and ​​K​​  B​  = 
​κ​​ ∗​​(​w – ​, 1, ​p​B​​)​​. Then, ​​​​ ⋆​​ is BF-IC and achieves a weakly lower welfare loss than any 
BF-IC buffer-queue mechanism.

As stated above, the intuition for the result is that SIRO balances the priority of 
agents. Agents may hold a belief ​σ  ≡  1​, which is equivalent to the belief ​​​p ˆ ​​α​​  =  1.​  
Agents with this belief who enter position ​i​ believe that a large number of agents 
will join the buffer queue after them, and they will end up in position ​i​ in a buffer 
queue that holds the maximal number of agents ​K​. To maintain BF-IC, it must be 
that such an agent does not regret joining the buffer queue. On the other hand, pri-
oritizing agents that joined earlier over the agents that join later prevents the policy 
from offering a low expected wait to agents who join an almost full buffer queue. 
The SIRO policy balances these two goals by giving agents who join the buffer 
queue the maximal priority such that none of the agents already in the buffer queue 
regret joining, which is to give them all equal priority.

Figure 5 presents the expected waits under SIRO and other policies for ​​p​α​​  = ​
p​A​​  =  1/2​. It illustrates how the SIRO policy improves upon the FCFS policy. Any 
IC FCFS policy is also BF-IC, because expected waits under FCFS are independent 
of whether future agents join the buffer queue. But SIRO reduces the variation in ​​
w​k​​​ and maintains an acceptable expected wait under a larger range of states than 
FCFS. In addition, the SIRO policy is simpler than the FCFS policy in that it does 
not require tracking positions of agents within the buffer queue. Figure 5 also shows 
that ​​w​k​​​ increases with ​k​.

The variance of realized wait is higher under SIRO than under FCFS, and some 
agents can wait significantly longer than ​​w​k​​​ before being assigned.37 In the context 
of our model, any agent waiting in the buffer queue will prefer to keep waiting for 
their preferred item over taking an immediate mismatched item, because past wait-
ing costs are sunk and the expected wait of any agent in the buffer queue is at most ​​
w​K​​  ≤ ​ w – ​​. However, the increased variance of waiting times may be undesirable for 
agents who wish to plan ahead. Additionally, although agents are offered more equi-
table expected waits when they make their choice, the realized wait may be less 
equitable. Section VI presents simulation results showing that a modification of the 
SIRO policy can mitigate this concern.

37 Vasicek (1977) shows that FCFS minimizes the variance of waiting times while LCFS maximizes it.
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B. Indirect Parameter-Free SIRO Mechanism

The SIRO mechanism ​​​​ ⋆​  = ​ (​K​​  A​, ​φ​​ SIRO​, ​K​​  B​, ​φ​​ SIRO​)​​ is almost a prior-free 
mechanism. The queuing policy ​​φ​​ SIRO​​ is prior free, but the planner needs 
information on the agent’s valuations to appropriately set ​​K​​  A​, ​K​​  B​​ to determine in 
which states agents decline mismatched items. If ​​K​​  A​, ​K​​  B​​ are too high, the mecha-
nism ​​​​ ⋆​​ is not IC. If ​​K​​  A​, ​K​​  B​​ are too low, the mechanism ​​​​ ⋆​​ forces mismatched 
agents approached in the states ​​K​​  A​​ and ​−​K​​  B​​ to take the current item even though 
they would have preferred to wait for their preferred item.38 This section presents a 
prior-free indirect mechanism in which ​​K​​  A​, ​K​​  B​​ are determined in equilibrium. This 
mechanism is a simple indirect mechanism that improves upon the waiting list with 
declines.

Consider ​​​​ ◦​  = ​ (∞, ​φ​​ SIRO​, ∞, ​φ​​ SIRO​)​​ as an indirect mechanism. In contrast to 
a direct mechanism ​​​​ ⋆​  = ​ (​K​​  A​, ​φ​​ SIRO​, ​K​​  B​, ​φ​​ SIRO​)​​ with finite ​​K​​  A​, ​K​​  B​​, all agents are 
offered the option to join the buffer queue and wait for their preferred item (that is, 
the planner does not impose a cap on the size of the buffer queues). The mechanism ​​
​​ ◦​​ differs from the waiting list with declines only in that all agents who declined 
items are equally likely to be assigned a future arrival of their preferred item.

Restrict attention to strategies in which agents take an immediate matching item.39 
Denote a mixed strategy of an ​α​ agent under ​​​​ ◦​​ by ​s : ℕ  → ​ [0, 1]​​, where ​s​(k)​​ is the 
probability that the ​α​ agent in position ​k​ declines a mismatched ​B​ item and waits 
for an ​A​. Because of the SIRO queuing policy, the expected waits ​​{​w​k​​}​​ depend40 on ​
s​ (for an illustration, compare Figure 5, panels D and E). A strategy ​s​ constitutes 
a Nash equilibrium if for the corresponding ​​{​w​k​​}​​ it holds that ​s​(k)​  >  0  ⇒ ​ w​k​​  ≤ ​
w – ​​ and ​s​(k)​  <  1  ⇒ ​ w​k​​  ≥ ​ w – ​​.

LEMMA 8: If ​​s​​ ∗​​ is an equilibrium of the indirect mechanism ​​​​ ◦​  = ​ (∞, ​φ​​ SIRO​,  
∞, ​φ​​ SIRO​)​​, then ​​s​​ ∗​​(k)​  =  1​ for ​1  ≤  k  ≤ ​ κ​​ ∗​​(​w – ​, 1, ​p​A​​)​​.

In other words, if agents will decline a mismatched item in a state ​k​ under a 
BF-IC direct SIRO mechanism ​​​​ ⋆​​, agents will decline a mismatched item in a state ​
k​ under an equilibrium ​​s​​ ∗​​ of the indirect SIRO mechanism ​​​​ ◦​​. An immediate cor-
ollary is that equilibrium welfare under the indirect mechanism is higher than under 
the optimal BF-IC SIRO mechanism ​​​​ ⋆​​, and therefore also higher than the welfare 
under the waiting list with declines.

Under the indirect mechanism ​​​​ ◦​​, any strategy ​s​ that declines mismatched items 
in some position ​k​ is not a dominant strategy, because an agent who joins the SIRO 
buffer queue faces arbitrarily long expected wait if sufficiently many subsequent 
agents join after him. However, the expected wait of any agent in the SIRO buffer 
queue equals the expected wait of the last agent who joins the buffer queue in the 
same period. If all ​α​ agents share identical preferences and beliefs, the decision of 

38 An extreme example is the sequential assignment without choice mechanism, which is equivalent to ​​K​​  A​  = ​
K​​  B​  =  0​.

39 That is, we rule out strictly dominated strategies in which agents decline immediate assignment to their 
preferred item.

40 By Lemma 6’, the expected waits ​​{​w​k​​}​​ are independent of the strategy chosen by ​β​ agents if under any strat-
egy ​β​ agents always take an immediate ​B​ item.
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the last agent to join indicates that all agents in the buffer queue also prefer to have 
joined.

LEMMA 9: Let ​​s​​ ∗​​ be an equilibrium of the indirect mechanism ​​​​ ◦​  = ​ (∞, ​φ​​ SIRO​,  
∞, ​φ​​ SIRO​)​​. Then at the end of each period, any agent in the buffer queue prefers 
staying in the buffer queue to being immediately assigned a mismatched item.

The assumption that all agents in the buffer queue have identical preferences 
is necessary for Lemma 9. For example, if agents have heterogeneous mismatch 
values, an agent with a high mismatch value may regret joining the buffer queue 
if many agents with low mismatch values (who are willing to wait longer for their 
preferred item) join the buffer queue after him.

Under the indirect mechanism, the burden of deciding in which states to decline 
mismatched items falls on the agents. If agents are provided with historical expected 
wait estimates, their decision is simple, because they need only to decide whether 
the offered expected wait is acceptable. Altman and Shimkin (1998) prove simple 
learning dynamics converge to equilibrium for a similar SIRO queuing game.

Figure 6 depicts welfare loss under different mechanisms for varying values of ​v​.  
The figure shows the equilibrium welfare loss under the waiting list with declines 
(FCFS) and the indirect SIRO buffer-queue mechanism. Figure 6 also shows the 
minimal welfare loss under any BF-IC buffer-queue mechanism (labeled SIRO 
BF-IC) which is achieved by a direct SIRO buffer-queue mechanism that appro-
priately sets ​​K​​  A​, ​K​​  B​​ to restrict entry to the buffer queue. In addition, Figure 6 also 
depicts the lower bound for the welfare loss under any IC buffer-queue mechanism 
given by Corollary 3. Note that SIRO captures more than half of the difference 
between FCFS and the lower bound.

VI.  Limiting Realized Envy

A potential challenge in implementing the SIRO buffer-queue mechanism is that 
the random assignment can cause some agents to wait significantly longer than 
expected. Moreover, agents who keep waiting and see others assigned before them 
experience realized envy and may be understandably aggravated. This section uses 
simulation to quantify realized envy and evaluate heuristics that limit realized envy.

To quantify realized envy, define the overtaking count of an agent who joins posi-
tion ​k​ in the buffer queue41 and assigned the ​ℓ​th item to arrive42 to be ​max​{ℓ − k, 0}​​.  
That is, the overtaking count measures whether an agent experiences a longer wait 
than the agent would have faced under FCFS. Under FCFS, the overtaking count of 
all agents is 0. Figure 7 shows the distribution of overtaking counts for agents who 
join a SIRO buffer queue with ​K  ∈ ​ {4, 10}​​, for ​​p​α​​  = ​ p​A​​  =  1/2​. The figure pres-
ents the distribution for all agents, as well as the distribution for agents who join an 
empty buffer queue. Both distributions show a small but nonnegligible probability 
that agents experience significant realized envy.

41 That is, there were ​k − 1​ agents in the buffer queue just before the agent joined.
42 That is, ​ℓ​ items arrived while the agent was waiting in the buffer queue.
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We simulate a simple heuristic that deviates from the SIRO policy by prioritizing 
agents that reach a specified overtaking limit. This simple heuristic bounds the pos-
sible overtaking counts an agent can experience, and thus avoids extreme realized 
envy. Setting an overtaking limit equal to 0 is equivalent to using a FCFS queuing 
priority. Setting an overtaking limit equal to ​∞​ is equivalent to using a SIRO queu-
ing priority. By choosing an appropriate intermediate overtaking limit the planner 

Figure 6. Welfare Loss for Varying Values of ​v​ and ​​p​α​​ = ​ p​A​​ =  1/2, c =  1​.
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can strike a compromise between equalizing the expected waits and avoiding real-
ized envy.

Figure 8 shows the performance of the SIRO with limited overtaking policy for 
various buffer-queue sizes and overtaking limits. The figure shows the expected 
wait ​​w​K​​​ for an agent joining the last position in the buffer-queue given the maxi-
mal buffer-queue size ​K​ and the overtaking limit. Each buffer-queue policy is IC if ​​
w – ​  =  v/c​ is higher than the depicted ​​w​K​​​. The figure shows that even a mild overtak-
ing limit can significantly reduce the expected wait ​​w​K​​​ relative to FCFS (or an over-
taking limit of 0), which enables the planner to implement a larger IC buffer-queue 
size and lower misallocation. The figure also shows that a moderately high overtak-
ing limit does not hinder the performance of the SIRO policy. An overtaking limit of 
20 is unlikely to bind and therefore yields essentially the same ​​w​K​​​ as SIRO.

Finally, we evaluate FCFS, SIRO, and SIRO with limited overtaking in a more 
elaborate setting with heterogeneous values in which the value of the preferred 
item ​v​ is drawn from ​U​[0, 2]​​ independently across agents.43 In this setting, the 
welfare-maximizing assignment assigns all items to matching agents and attains an 
average assigned value of ​E​[v]​  =  1​. Because an agent assigned to a mismatched 
item decreases total welfare by ​v​, the mechanism can reduce welfare loss either by 
reducing the misallocation rate or by replacing misallocations of agents with high ​v​ 
with misallocations of agents with low ​v​.

43 The value of the mismatched item is zero.

Figure 8

Notes: Expected wait for an agent who joins the last position of a SIRO buffer queue with an overtaking limit for ​​
p​α​​  = ​ p​A​​  =  1/2​. Each line corresponds to a different buffer-queue size ​K​ and various overtaking limits. The FCFS 
policy corresponds to an overtaking limit of 0.
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Figure 9 depicts the equilibrium welfare loss from misallocation given each policy 
for various delay costs ​c  ∈ ​ {0.05, 0.1, …, 0.25}​​ and ​​p​α​​  = ​ p​A​​  =  0.5​. Equilibrium 
welfare was calculated by initializing estimates for ​​{​​w ˆ ​​k​​}​​, simulating the system with 
agents following the strategy of joining position ​k​ to wait for the preferred item if 
and only if ​v − c × ​​w ˆ ​​k​​  >  0​ and calculating new expected wait estimates ​​{​​w ˆ ​​k​​}​​ from 
the simulation, and iterating until a fixed point is reached. This process converged 
to a fixed point quickly. Once a fixed point was found, an additional simulation used 
the equilibrium ​​{​w​k​​}​​ to calculate welfare loss.

Figure 9 shows that SIRO reduces welfare loss in this setting as well. The FCFS 
policy (given by an overtaking limit of 0) eliminates all realized envy but results in 
higher welfare loss. SIRO with limited overtaking reduces welfare loss, even with a 
small overtaking limit; in fact, most of the welfare gains can be attained by allowing 
a small overtaking limit.

VII.  Concluding Remarks

SIRO may raise concerns of fairness, in that agents are not assigned in order. 
First, we note that SIRO is more fair than FCFS in that agents are offered a more 
consistent expected wait for their preferred items. Second, the ordering of agents on 
a waiting list may be arbitrary, and agents who sign up earlier may not have higher 
assignment value. For example, local parents may be able to register for daycare 
centers years in advance, whereas advanced registration is not possible for recently 
moved parents who may have a greater need for daycare. Constraining the mecha-
nism to prioritize agents who made their choice earlier is equivalent to requiring the 
FCFS policy, which generates lower welfare than SIRO.

Under our assumptions, agents exert a positive externality when declining 
items because they are essentially letting other agents pass them in line. However, 

Figure 9

Note: Welfare loss under SIRO with various overtaking limits for an economy with ​​p​α​​  = ​ p​A​​  =  0.5​, ​v​ drawn from ​
U​[0, 2]​​ independently for each agent and ​c  ∈ ​ {0.05, 0.1, 0.15, 0.2, 0.25}​.​
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waiting-list policies commonly discourage agents from declining items.44 One pos-
sible justification is that agents who decline items are an administrative burden. 
Although our analysis does not explicitly account for the time and costs required 
to administer the offers, under buffer-queue mechanisms, each agent is approached 
only once, limiting the administrative burden. Furthermore, these mechanisms 
require storing preference information for relatively few agents. We therefore 
believe overloaded waiting lists should encourage rather than discourage agents to 
decline mismatched items.

Put together, the results in this paper show that welfare in waiting list mecha-
nism depends on the mechanism’s ability to offer agents a choice between items 
and appropriate associated waiting times. When the system is overloaded, total 
waiting costs are constant and can only be transferred between agents. Expected 
waiting times serve a similar role to prices in guiding the assignment, but these 
prices fluctuate, potentially leading to misallocations. The SIRO buffer-queue 
mechanism and partial information mechanisms can reduce expected wait fluctu-
ations and improve welfare.

Appendix A. The Buffer-Queue Markov Chain

In this Appendix, we describe the details of the Markov chain used to analyze 
the dynamics of the buffer-queue mechanism. The Markov chain captures changes 
in the buffer-queues from one period to another. Its states are ​S  = ​ {−​K​​  B​, 
…, −1, 0, 1, 2,  …, ​K​​  A​}​​, where ​k  ≥  0​ indicates ​k​ agents of type ​α​ waiting in the ​A​ 
buffer queue and ​k  ≤  0​ indicates ​​|k|​​ agents of type ​β​ waiting in the ​B​ buffer queue. 
To see no other possible states of the system are possible, notice that at any time one 
of the buffer queues must be empty.

Recall that the period starts when the mechanism learns the type of the current 
period’s item. If matching agents are in the buffer queue for the current item,45 the 
mechanism assigns the item to the first agent in that buffer queue; the period ends 
and the next period starts with one less agent in that buffer queue.46 If the buf-
fer queue of the current item is empty,47 the mechanism starts offering the current 
item to new agents. The mechanism continues to approach new agents until either 
a matching agent is found or a buffer queue reaches its maximal size. If the buffer 
queue reaches its maximal size, the mechanism assigns the item to the next new 
agent, regardless of his type. If the period started with ​​|k|​​ agents in the buffer queue, 
the next period starts with ​​|ℓ|​​ agents in the buffer queue, where ​​|ℓ − k|​​ is the number 
of agents who declined the current item and joined the buffer queue. The possible 
transitions between ​​s​t​​​ and ​​s​t+1​​​ are depicted in Figure 3.

44 We surveyed the waiting-list policies of the New York City Housing Authority, Newark Housing Authority, 
Boston Housing Authority, Atlanta Housing Authority, Philadelphia Housing Authority, the Housing Authority of 
Los Angeles, Miami-Dade County Public Housing, the Housing Authority of Baltimore City, and the Chicago 
Housing Authority. All of these authorities penalize agents if they decline apartments. In several authorities, agents 
who decline an apartment will not be offered another one.

45 That is, an ​A​ item arrived and there are ​​s​t​​  =  k  >  0​ agents of type ​α​, or a ​B​ item arrived and ​​s​t​​  =  k  <  0​.
46 That is, if ​k  >  0​, then the next period starts with state ​​s​t+1​​  =  k − 1​, and if ​k  <  0​, the next period starts 

with state ​​s​t+1​​  =  k + 1​.
47 That is, the current item is ​B​ and ​k  ≥  0​, or the current item is ​A​ and ​k  ≤  0​.
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Each random transition of the Markov chain corresponds to a period, and transi-
tion probabilities are given by

​Pr​(​s​t​​  =  ℓ | ​s​t−1​​  =  k)​  = ​

⎧

 

⎪
 ⎨ 

⎪
 

⎩

​

​p​A​​,

​ 

if k  >  0, ℓ  =  k − 1;

​    

​p​B​​ ​p​ α​ ℓ−k​  ​p​β​​,

​ 

if k  ≥  0, k  ≤  ℓ  < ​ K​​  A​, ℓ  ≠  0;

​     

​p​B​​ ​p​ α​ ℓ−k​​(  ​p​α​​ + ​p​β​​)​,
​ 

if k  ≥  0, ℓ  = ​ K​​  A​;

​    ​p​A​​ ​p​α​​ + ​p​B​​ ​p​β​​,​  if k  =  ℓ  =  0;​    
​p​B​​,

​ 
if k  <  0, ℓ  =  k + 1;

​    

​p​A​​ ​p​ β​ 
|ℓ−k|​  ​p​α​​,

​ 

if k  ≤  0, k  ≥  ℓ  >  −​K​​  B​, ℓ  ≠  0;

​     

​p​A​​ ​p​ β​ 
|ℓ−k|​​(  ​p​β​​ + ​p​α​​)​,

​ 

if k  ≤  0, ℓ  =  −​K​​  B​.

 ​​ ​

For example, if the period begins in state ​​s​t​​  =  1​, that is, one ​α​ agent is waiting in 
the buffer queue, the probability that the period will end in state ​​s​t+1​​  =  2  < ​ K​​  A​​ is  
​​p​B​​ ​p​α​​ ​p​β​​​. To calculate this probability, observe that the system accumulates another 
agent in the buffer queue when the following occurs. First, a ​B​ item arrives, which 
occurs with probability ​​p​B​​​. The ​B​ item is offered to a new agent, who declines the 
item and joins the buffer queue, which occurs if the agent is of type ​α​ with probability ​​
p​α​​​. The item is then offered to the following new agent, who accepts the item, which 
occurs if that agent is of type ​β​ with probability ​​p​β​​​. If ​​K​​  A​  =  2​, the last agent will 
accept the item even if he is of type ​α​, and so the probability of this transition becomes  
​​p​B​​ ​p​α​​​(  ​p​α​​ + ​p​β​​)​  = ​ p​B​​ ​p​α​​​.

We refine this Markov chain to describe the mechanism within a period using the 
extended set of states ​​S ˆ ​​ defined by

	​ ​S ˆ ​  = ​ S​​  ϕ​  ∪ ​ S​​  A​  ∪ ​ S​​  B​

	 =  ​{​(k, ϕ)​ | −​K​​  B​  ≤  k  ≤ ​ K​​  A​}​

	 ∪  ​{​(−k, A)​ | 0  ≤  k  ≤ ​ K​​  B​}​

	 ∪  ​{​(k, B)​ | 0  ≤  k  ≤ ​ K​​  A​}​.​

The Markov chain on ​​S ˆ ​​ is depicted in Figure 10. Using ​​S ˆ ​​, we can generate the tran-
sitions over ​S​ by restricting attention to visits to ​​S​​  ϕ​​ states. Every period begins and 
ends in a state in ​​S​​  ϕ​​. We move from a state in ​​S​​  ϕ​​ when an item arrives. For example, 
suppose the initial state is ​​(k, ϕ)​​ for ​0  <  k  < ​ K​​  A​​. If an ​A​ item arrives, it is assigned 
to the first agent in the ​A​ buffer queue, the system transitions to state ​​(k − 1, ϕ)​​, 
and the period ends. If a ​B​ item arrives, the system transitions to state 
​​(k, B)​​. The transitions from a state ​​(k, B)​​ correspond to the mechanism approaching 
a new agent, and the following state depends on the type of the agent. If the new 
agent is of type ​β​, he takes the current item, the system transitions to state ​​(k, ϕ)​​, 
and the period ends. If the new agent is of type ​α​, he declines the item and joins the ​
A​ buffer queue, the system transitions to state ​​(k + 1, B)​​, and the period continues.

For calculation purposes, the state space ​​S ˆ ​​ has the advantage that all transitions 
are between adjacent states. Using the state space ​​S ˆ ​​ and the flow equations of the 
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Markov chain, we derive the stationary distribution that describes the long-run 
behavior of the system. Note that only two transitions in the chain imply misal-
location: the transition from ​​(​K​​  A​, B)​​ to ​​(​K​​  A​, ϕ)​​ when an ​α​ agent is drawn, and the 
symmetric transition from ​​(−​K​​  B​, A)​​ to ​​(−​K​​  B​, ϕ)​​ when a ​β​ is drawn. Transition 
probabilities are given by

	​ Pr​(s | ​(k, ϕ)​)​  = ​ {​
​p​A​​,​ 

if s  = ​ (k − 1, ϕ)​;
​   

​p​B​​,
​ 

if s  = ​ (k, B)​;
 ​​	  k  >  0,​

	​ Pr​(s | ​(k, ϕ)​)​  = ​ {​
​p​A​​,​ 

if s  = ​ (k, A)​;
​  

​p​B​​,
​ 

if s  = ​ (k + 1, ϕ)​;
​​	 k  <  0,​

	​ Pr​(s | ​(0, ϕ)​)​  = ​ {​
​p​A​​,​ 

if s  = ​ (0, A)​;
​  

​p​B​​,
​ 

if s  = ​ (0, B)​;
​​​

	​ Pr​(s | ​(k, B)​)​  = ​ {​
​p​α​​,​ 

if s  = ​ (k + 1, B)​;
​   

​p​β​​,
​ 

if s  = ​ (k, ϕ)​;
 ​​ 	 0  ≤  k  < ​ K​​  A​,​

	​ Pr​(s | ​(​K​​  A​, B)​)​  = ​ {​​p​α​​ + ​p​β​​,​  if s  = ​ (​K​​  A​, ϕ)​;​​​

	​ Pr​(s | ​(k, A)​)​  = ​ {​
​p​α​​,​ 

if s  = ​ (k, ϕ)​;
​  

​p​β​​,
​ 

if s  = ​ (k − 1, A)​;
​​	 −​K​​  B​  <  k  ≤  0,​

	​ Pr​(s | ​(−​K​​  B​, A)​)​  = ​ {​​p​α​​ + ​p​β​​,​  if s  = ​ (−​K​​  B​, ϕ)​​​.​

Using the Markov chain on ​​S ˆ ​​, we can calculate the stationary distribution for both ​
S​ and ​​S ˆ ​​.

Figure 10. The Markov Chain for the State Space ​​S ˆ ​​

−KB, A −1, A 0, A

−KB, ϕ KA, ϕ−1, ϕ 1, ϕ0, ϕ

KA, B1, B0, B

β

B

β

B

B β B β B β, α

α, β A α A α A

A

α

A

α



3906 THE AMERICAN ECONOMIC REVIEW DECEMBER 2022

LEMMA 10: The Markov chain is ergodic and its stationary distribution ​π​ over ​​S ˆ ​​ is

	​ π​(k, ϕ)​  = ​
⎧
 

⎪
 ⎨ 

⎪
 

⎩
​
​​(​ ​p​α​​ _ ​p​A​​ ​)​​​ 

k
​  ​p​B​​ π​(0, ϕ)​,

​ 
if k  >  0;

​   
​​(​ 

​p​β​​ _ ​p​B​​ ​)​​​ 
|k|

​  ​p​A​​ π​(0, ϕ)​,
​ 

if k  <  0;
 ​​​

and

	​​ π​(k, B)​  = ​ {​
π​(k, ϕ)​,

​ 
if k  >  0;

​  
​p​B​​ π​(0, ϕ)​,

​ 
if k  =  0;

​​​      ​ π​(k, A)​  = ​ {​
π​(k, ϕ)​,

​ 
if k  <  0;

​  
​p​A​​ π​(0, ϕ)​,

​ 
if k  =  0;

​​​​

with

	​ π​(0, ϕ)​  = ​

⎧

 
⎪
 ⎨ 

⎪
 

⎩

​
​ 1 _ 2 ​ ​  1 ___________  

​p​B​​ ​K​​  A​ + ​p​A​​ ​K​​  B​ + 1
 ​,
​ 

if ​p​A​​  = ​ p​α​​;
​    ​ 1 _ 2 ​ ​  ​p​A​​ − ​p​α​​  ________________  

​p​A​​ ​p​β​​​​(​ 
​p​β​​ _ ​p​B​​ ​)​​​ 

​K​​  B​
​ − ​p​B​​ ​p​α​​​​(​ ​p​α​​ _ ​p​A​​ ​)​​​ 

​K​​  A​
​
 ​,​  if ​p​A​​  ≠ ​ p​α​​.

​​​

PROOF OF LEMMA 10:
It is clear that all states in the Markov chain on ​​S ˆ ​​ are recurrent. Let us denote the 

stationary distribution by ​π​, where ​π​(k)​​ is the stationary probability of state ​​(k, ϕ)​​,  
and ​​π​​   B​​(k)​​ is the stationary probability of ​​(k, B)​​ (and likewise for ​​π​​  A​ ​). The balance 
equations for ​0  <  k  < ​ K​​  A​​ are

	​ π​(k)​  = ​ p​A​​ π​(k + 1)​ + ​p​β​​  ​π​​   B​​(k)​,​

	​ ​π​​   B​​(k)​  = ​ p​α​​  ​π​​   B​​(k − 1)​ + ​p​B​​ π​(k)​,​

and balance equation for ​​(0, B)​​ yields

	​ ​π​​   B​​(0)​  = ​ p​B​​ π​(0)​.​

For any ​k  ≥  0,​ the flow through the cut between ​s  ≤  k​ and ​s  ≥  k + 1​ must be 
zero (see Figure 11), and therefore48

	​ ​p​A​​ π​(k + 1)​  = ​ p​α​​  ​π​​   B​​(k)​.​

We get that for ​k  =  0​ we have

	​ π​(1)​  = ​  ​p​α​​ _ ​p​A​​ ​ ​π​​   B​​(0)​  = ​ p​B​​ ​ 
​p​α​​ _ ​p​A​​ ​ π​(0)​,​

and for ​0  <  k  < ​ K​​  A​​ we have

	​ π​(k)​  = ​ p​A​​ π​(k + 1)​ + ​p​β​​  ​π​​   B​​(k)​  = ​ p​A​​ π​(k + 1)​ + ​p​β​​  ​ 
​p​A​​ _ ​p​α​​ ​ π​(k + 1)​ 

	 = ​ p​A​​ ​ 
​p​α​​ + ​p​β​​ _ ​p​α​​ ​  π​(k + 1)​  = ​  ​p​A​​ _ ​p​α​​ ​ π​(k + 1)​,​

48 See Caldentey Kaplan, and Weiss (2009).
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and

	​ ​π​​   B​​(k)​  = ​  ​p​A​​ _ ​p​α​​ ​ π​(k + 1)​  =  π​(k)​.​

By induction, for ​0  <  k  ≤ ​ K​​  A​​ we have

	​ π​(k)​  = ​ p​B​​​​(​ ​p​α​​ _ ​p​A​​ ​)​​​ 
k
​π​(0)​.​

The balance equations for ​​(​K​​  A​, ϕ)​​ yields

	​ π​(​K​​  A​)​  = ​ (  ​p​α​​ + ​p​β​​)​ × ​π​​   B​​(​K​​  A​)​  = ​ π​​   B​​(​K​​  A​)​,

​and thus for ​0  ≤  k  ≤ ​ K​​  A​​ we have

	​ ​π​​   B​​(k)​  = ​ p​B​​​​(​ ​p​α​​ _ ​p​A​​ ​)​​​ 
k
​π​(0)​.​

Finally, we calculate ​π​(0)​​ by equating the total probability to 1. When  
​​p​A​​  = ​ p​α​​  =  p​, we have

	​ 1  = ​  ∑ 
k=1

​ 
​K​​  A​

 ​​ ​[π​(k)​ + ​π​​   B​​(k)​]​ + ​ ∑ 
k=1

​ 
​K​​   B​

 ​​​[π​(−k)​ + ​π​​  A​​(−k)​]​ + π​(0)​ + ​π​​   B​​(0)​ + ​π​​  A​​(0)​

	 =  2​ ∑ 
k=1

​ 
​K​​  A​

 ​​ ​p​B​​ π​(0)​ + 2​ ∑ 
k=1

​ 
​K​​   B​

 ​​ ​p​A​​ π​(0)​ + π​(0)​ + ​p​B​​ π​(0)​ + ​p​A​​ π​(0)​

	 =  2π​(0)​​(  ​p​B​​ ​K​​  A​ + ​p​A​​  ​K​​  B​ + 1)​,​

implying that

	​ π​(0)​  = ​  1 _ 
2
 ​ ​  1 ________________   
​(1 − p)​​K​​  A​ + p ​K​​  B​ + 1

 ​.​

Figure 11. The Cut between ​s ≤  1​ and ​s ≥  2​
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When ​​p​A​​  ≠ ​ p​α​​​,

	​ 1  = ​  ∑ 
k=1

​ 
​K​​  A​

 ​​ ​[π​(k)​ + ​π​​   B​​(k)​]​ + ​ ∑ 
k=1

​ 
​K​​   B​

 ​​ ​[π​(−k)​ + ​π​​  A​​(−k)​]​ + π​(0)​ + ​π​​   B​​(0)​ + ​π​​  A​​(0)​

	 =  2​ ∑ 
k=0

​ 
​K​​  A​

 ​​ ​p​B​​​​(​ ​p​α​​ _ ​p​A​​ ​)​​​ 
k
​π​(0)​ + 2​ ∑ 

k=0
​ 

​K​​   B​
 ​​ ​p​A​​​​(​ 

​p​β​​ _ ​p​B​​ ​)​​​ 
k

​π​(0)​

	 =  2π​(0)​​[​p​B​​ ​ 
​p​α​​​​(​ ​p​α​​ _ ​p​A​​ ​)​​​ 

​K​​  A​
​ − ​p​A​​
  ___________  ​p​α​​ − ​p​A​​ ​  + ​p​A​​ ​ 

​p​β​​​​(​ 
​p​β​​ _ ​p​B​​ ​)​​​ 

​K​​   B​
​ − ​p​B​​
  ___________  ​p​β​​ − ​p​B​​ ​ ]​

	 =  2π​(0)​ ​ 
​p​A​​ ​p​β​​​​(​ 

​p​β​​ _ ​p​B​​ ​)​​​ 
​K​​   B​

​ − ​p​B​​ ​p​α​​​​(​ ​p​α​​ _ ​p​A​​ ​)​​​ 
​K​​  A​

​
   ____________________  ​p​A​​ − ​p​α​​ ​ ,​

implying

	​ π​(0)​  = ​  1 _ 
2
 ​ ​  ​p​A​​ − ​p​α​​  ____________________   
​p​A​​ ​p​β​​​​(​ 

​p​β​​ _ ​p​B​​ ​)​​​ 
​K​​   B​

​ − ​p​B​​ ​p​α​​​​(​ ​p​α​​ _ ​p​A​​ ​)​​​ 
​K​​  A​

​
 ​,​

which converges to the former expression when ​​p​α​​  → ​ p​A​​​. ∎
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Adan, Ivo, Ana Bušić, Jean Mairesse, and Gideon Weiss. 2018. “Reversibility and Further Properties of 
FCFS Infinite Bipartite Matching.” Mathematics of Operations Research 43 (2): 598–621. 

Adan, Ivo, and Gideon Weiss. 2012. “Exact FCFS Matching Rates for Two Infinite Multitype 
Sequences.” Operations Research 60 (2): 475–89. 

Agarwal, Nikhil, Itai Ashlagi, Michael  A. Rees, Paulo  J. Somaini, and Daniel  C. Waldinger. 2019. 
“Equilibrium Allocations under Alternative Waitlist Designs: Evidence from Deceased Donor 
Kidneys.” NBER Working Paper 25607. 

Akbarpour, Mohammad, Shengwu Li, and Shayan Oveis Gharan. 2020. “Thickness and Information 
in Dynamic Matching Markets.” Journal of Political Economy 128 (3): 783–815. 

Altman, Eitan, and Nahum Shimkin. 1998. “Individual Equilibrium and Learning in Processor  
Sharing Systems.” Operations Research 46 (6): 776–84. 

Anderson, Ross, Itai Ashlagi, David Gamarnik, and Yash Kanoria. 2017. “Efficient Dynamic Barter 
Exchange.” Operations Research 65 (6): 1446–59. 

Arnosti, Nick, and Peng Shi. 2017. “Design of Lotteries and Waitlists for Affordable Housing 
Allocation.” Unpublished. 

Ashlagi, Itai, Maximilien Burq, Patrick Jaillet, and Vahideh Manshadi. 2019. “On Matching and 
Thickness in Heterogeneous Dynamic Markets.” Operations Research 67 (4): 927–49.

Asker, John, Allan Collard-Wexler, and Jan De Loecker. 2014. “Dynamic Inputs and Resource (Mis)
Allocation.” Journal of Political Economy 122 (5): 1013–63. 

Baccara, Mariagiovanna, SangMok Lee, and Leeat Yariv. 2020. “Optimal Dynamic Matching.” 
Theoretical Economics 15 (3): 1221–78. 

Barzel, Yoram. 1974. “A Theory of Rationing by Waiting.” Journal of Law and Economics  
17 (1): 73–95. 

Bergemann, Dirk, and Stephen Morris. 2005. “Robust Mechanism Design.” Econometrica  
73 (6): 1771–1813. 

Bergemann, Dirk, and Maher Said. 2011. “Dynamic Auctions.” Wiley Encyclopedia of Operations 
Research and Management Science, edited by James J. Cochran, Louis A. Cox Jr., Pinar Kes-
kinocak, Jeffrey P. Kharoufeh, and J. Cole Smith. New York: John Wiley & Sons. https://doi.
org/10.1002/9780470400531.eorms0270.

Bloch, Francis, and David Cantala. 2017. “Dynamic Assignment of Objects to Queuing Agents.” 
American Economic Journal: Microeconomics 9 (1): 88–122. 

https://doi.org/10.1002/9780470400531.eorms0270
https://doi.org/10.1002/9780470400531.eorms0270
http://pubs.aeaweb.org/action/showLinks?crossref=10.1287%2Fmoor.2017.0874&citationId=p_1
http://pubs.aeaweb.org/action/showLinks?crossref=10.1287%2Fopre.46.6.776&citationId=p_5
http://pubs.aeaweb.org/action/showLinks?crossref=10.1111%2Fj.1468-0262.2005.00638.x&citationId=p_12
http://pubs.aeaweb.org/action/showLinks?crossref=10.1086%2F677072&citationId=p_9
http://pubs.aeaweb.org/action/showLinks?crossref=10.1287%2Fopre.1110.1027&citationId=p_2
http://pubs.aeaweb.org/action/showLinks?crossref=10.1287%2Fopre.2017.1644&citationId=p_6
http://pubs.aeaweb.org/action/showLinks?crossref=10.3982%2FTE3740&citationId=p_10
http://pubs.aeaweb.org/action/showLinks?system=10.1257%2Fmic.20150183&citationId=p_14
http://pubs.aeaweb.org/action/showLinks?crossref=10.1086%2F704761&citationId=p_4
http://pubs.aeaweb.org/action/showLinks?crossref=10.1086%2F466785&citationId=p_11


3909LESHNO: DYNAMIC MATCHING IN OVERLOADED WAITING LISTSVOL. 112 NO. 12

Caldentey, René, Edward H. Kaplan, and Gideon Weiss. 2009. “FCFS Infinite Bipartite Matching of 
Servers and Customers.” Advances in Applied Probability 41 (3): 695–730. 

Carlton, Dennis W. 1977. “Peak Load Pricing with Stochastic Demand.” American Economic Review 
67 (5): 1006–10. 

Carlton, Dennis  W. 1978. “Market Behavior with Demand Uncertainty and Price Inflexibility.” 
American Economic Review 68 (4): 571–87. 

Che, Yeon-Koo, and Olivier Tercieux. 2020. “Optimal Queue Design.” Unpublished.
Chicago Housing Authority. 2016. “Frequently Asked Questions.” https://www.thecha.org/help/faqs.
Das, Sanmay, John P. Dickerson, Zhuoshu Li, and Tuomas Sandholm. 2015. “Competing Dynamic 

Matching Markets.” In AMMA: Auctions, Market Mechanisms, and Their Applications, Vol. 112, 
edited by Scott Duke Kominers and Lirong Xia, 2–11. Red Hook, NY: Curran Associates, Inc. 

De Vany, Arthur. 1976. “Uncertainty, Waiting Time, and Capacity Utilization: A Stochastic Theory of 
Product Quality.” Journal of Political Economy 84 (3): 523–41. 

Doval, Laura. 2015. “A Theory of Stability in Dynamic Matching Markets.” Unpublished. 
Doval, Laura, and Balázs Szentes. 2018. “On the Efficiency of Queueing in Dynamic Matching 

Markets.” Unpublished. 
Forbes. 2007. “Toughest NFL Waiting Lists.” Forbes, September 7. https://www.forbes.com/2007/09/07/

nfl-football-tickets-forbeslife-cx_ls_0907tickets.html?sh=60edc49424c8. 
Hassin, Refael, and Moshe Haviv. 2003. To Queue or Not to Queue: Equilibrium Behavior in Queueing 

Systems. Vol. 59, New York: Springer Science and Business Media. 
Kaplan, Edward H. 1984. “Managing the Demand for Public Housing.” PhD diss. Massachusetts 

Institute of Technology.
Kaplan, Edward H. 1986. “Tenant Assignment Models.” Operations Research 34 (6): 832–43. 
Kaplan, Edward H. 1987. “Tenant Assignment Policies with Time-Dependent Priorities.” 

Socio-Economic Planning Sciences 21 (5): 305–10. 
Kaplan, Edward H. 1988. “A Public Housing Queue with Reneging and Task-Specific Servers.” 

Decision Sciences 19 (2): 383–91. 
Kessler, Judd  B., and Alvin  E. Roth. 2014. “Getting More Organs for Transplantation.” American 

Economic Review 104 (5): 425–30. 
Leshno, Jacob D. 2022. “Replication Data for: Dynamic Matching in Overloaded Waiting Lists.” 

American Economic Association [publisher], Inter-university Consortium for Political and Social 
Research [distributor]. https://doi.org/10.3886/E178142V1.

Levin, Jonathan. 2003. “Relational Incentive Contracts.” American Economic Review 93 (3): 835–57. 
Lindsay, Coton M., and Bernard Feigenbaum. 1984. “Rationing by Waiting Lists.” American  

Economic Review 74 (3): 404–17. 
Little, John D. C. 1961. “A Proof for the Queuing Formula: L = (lambda)W.” Operations Research  

9 (3): 383–87. 
Martin, Stephen, and Peter C. Smith. 1999. “Rationing by Waiting Lists: An Empirical Investigation.” 

Journal of Public Economics 71 (1): 141–64. 
Naor, P. 1969. “The Regulation of Queue Size by Levying Tolls.” Econometrica 37 (1): 15–24. 
New York City Public Housing Authority. 2015. “New York City Housing Authority’s Tenant Selec-

tion and Assignment Plan.” https://eshare.nycha.info/RFQ/Property%20Management%20RFP%20
Documents/Forms/AllItems.aspx?RootFolder=%2fRFQ%2fProperty%20Management%20
RFP%20Documents%2fRFP-66734%2fRFP%2066734%20-%20Exhibit%20D%2fTenant%20
Selection%20and%20Assignment%20Plan (October 25, 2022).

Schummer, James. 2021. “Influencing Waiting Lists.” Journal of Economic Theory: 105263. 
Su, Xuanming, and Stefanos A. Zenios. 2004. “Patient Choice in Kidney Allocation: The Role of the 

Queueing Discipline.” Manufacturing and Service Operations Management 6 (4): 280–301. 
Su, Xuanming, and Stefanos A. Zenios. 2005. “Patient Choice in Kidney Allocation: A Sequential 

Stochastic Assignment Model.” Operations Research 53 (3): 443–55. 
Su, Xuanming, and Stefanos A. Zenios. 2006. “Recipient Choice Can Address the Efficiency-Eq-

uity Trade-Off in Kidney Transplantation: A Mechanism Design Model.” Management Science  
52 (11): 1647–60.

Thakral, Neil. 2016. “The Public-Housing Allocation Problem.” Unpublished. 
United Network for Organ Sharing (UNOS). 2014. Annual Report of the US Organ Procurement 

and Transplantation Network and the Scientific Registry of Transplant Recipients. Richmond, VA: 
United Network for Organ Sharing.

United Network for Organ Sharing (UNOS). 2016. “UNOS Data.” Organ Procurement and Transplan-
tation Network. https://optn.transplant.hrsa.gov/data/view-data-reports/national-data/# (accessed 
December 2016).

Ünver, M. Utku. 2010. “Dynamic Kidney Exchange.” Review of Economic Studies 77 (1): 372–414. 

https://www.thecha.org/help/faqs
https://www.forbes.com/2007/09/07/nfl-football-tickets-forbeslife-cx_ls_0907tickets.html?sh=60edc49424c8
https://www.forbes.com/2007/09/07/nfl-football-tickets-forbeslife-cx_ls_0907tickets.html?sh=60edc49424c8
https://doi.org/10.3886/E178142V1
https://eshare.nycha.info/RFQ/Property%20Management%20RFP%20Documents/Forms/AllItems.aspx?RootFolder=%2fRFQ%2fProperty%20Management%20RFP%20Documents%2fRFP-66734%2fRFP%2066734%20-%20Exhibit%20D%2fTenant%20Selection%20and%20Assignment%20Plan
https://eshare.nycha.info/RFQ/Property%20Management%20RFP%20Documents/Forms/AllItems.aspx?RootFolder=%2fRFQ%2fProperty%20Management%20RFP%20Documents%2fRFP-66734%2fRFP%2066734%20-%20Exhibit%20D%2fTenant%20Selection%20and%20Assignment%20Plan
https://eshare.nycha.info/RFQ/Property%20Management%20RFP%20Documents/Forms/AllItems.aspx?RootFolder=%2fRFQ%2fProperty%20Management%20RFP%20Documents%2fRFP-66734%2fRFP%2066734%20-%20Exhibit%20D%2fTenant%20Selection%20and%20Assignment%20Plan
https://eshare.nycha.info/RFQ/Property%20Management%20RFP%20Documents/Forms/AllItems.aspx?RootFolder=%2fRFQ%2fProperty%20Management%20RFP%20Documents%2fRFP-66734%2fRFP%2066734%20-%20Exhibit%20D%2fTenant%20Selection%20and%20Assignment%20Plan
https://optn.transplant.hrsa.gov/data/view-data-reports/national-data/#
http://pubs.aeaweb.org/action/showLinks?system=10.1257%2Faer.104.5.425&citationId=p_30
http://pubs.aeaweb.org/action/showLinks?crossref=10.1239%2Faap%2F1253281061&citationId=p_15
http://pubs.aeaweb.org/action/showLinks?crossref=10.1111%2Fj.1467-937X.2009.00575.x&citationId=p_45
http://pubs.aeaweb.org/action/showLinks?crossref=10.1287%2Fopre.9.3.383&citationId=p_34
http://pubs.aeaweb.org/action/showLinks?crossref=10.1016%2Fj.jet.2021.105263&citationId=p_38
http://pubs.aeaweb.org/action/showLinks?crossref=10.1287%2Fopre.34.6.832&citationId=p_27
http://pubs.aeaweb.org/action/showLinks?crossref=10.1016%2FS0047-2727%2898%2900067-X&citationId=p_35
http://pubs.aeaweb.org/action/showLinks?crossref=10.1287%2Fmsom.1040.0056&citationId=p_39
http://pubs.aeaweb.org/action/showLinks?crossref=10.1016%2F0038-0121%2887%2990003-6&citationId=p_28
http://pubs.aeaweb.org/action/showLinks?system=10.1257%2F000282803322157115&citationId=p_32
http://pubs.aeaweb.org/action/showLinks?crossref=10.1086%2F260457&citationId=p_21
http://pubs.aeaweb.org/action/showLinks?crossref=10.2307%2F1909200&citationId=p_36
http://pubs.aeaweb.org/action/showLinks?crossref=10.1287%2Fopre.1040.0180&citationId=p_40
http://pubs.aeaweb.org/action/showLinks?crossref=10.1111%2Fj.1540-5915.1988.tb00274.x&citationId=p_29
http://pubs.aeaweb.org/action/showLinks?pmid=10266339&citationId=p_33
http://pubs.aeaweb.org/action/showLinks?crossref=10.1287%2Fmnsc.1060.0541&citationId=p_41


3910 THE AMERICAN ECONOMIC REVIEW DECEMBER 2022

van Dijk, Winnie. 2019. “The Socio-Economic Consequences of Housing Assistance.” Unpublished. 
Vasicek, Oldrich A. 1977. “An Inequality for the Variance of Waiting Time under a General Queuing 

Discipline.” Operations Research 25 (5): 879–84. 
Verdier, Valentin, and Carson Reeling. 2022. “Welfare Effects of Dynamic Matching: An Empirical 

Analysis.” Review of Economic Studies 89 (2): 1008–37.
Waldinger, Daniel. 2021. “Targeting In-Kind Transfers through Market Design: A Revealed Preference 

Analysis of Public Housing Allocation.” American Economic Review 111 (8): 2660–96. 
Wiesner, Russell, Erick Edwards, Richard Freeman, Ann Harper, Ray Kim, Patrick Kamath, Walter 

Kremers et  al. 2003. “Model for End-Stage Liver Disease (MELD) and Allocation of Donor 
Livers.” Gastroenterology 124 (1): 91–96.

http://pubs.aeaweb.org/action/showLinks?system=10.1257%2Faer.20190516&citationId=p_49
http://pubs.aeaweb.org/action/showLinks?pmid=12512033&crossref=10.1053%2Fgast.2003.50016&citationId=p_50
http://pubs.aeaweb.org/action/showLinks?crossref=10.1287%2Fopre.25.5.879&citationId=p_47
http://pubs.aeaweb.org/action/showLinks?crossref=10.1093%2Frestud%2Frdab048&citationId=p_48

	Dynamic Matching in Overloaded Waiting Lists
	Related Literature
	Organization of the Paper

	I. Model of Dynamic Matching in Waiting Lists
	II. The Waiting-List-with-Declines Mechanism
	III. Information Design
	IV. Analysis via a Buffer-Queue Representation
	A. Dynamics and Welfare

	V. Controlling Expected Wait Fluctuations via Queuing Policy Design
	A. The Robust SIRO Queuing Policy
	B. Indirect Parameter-Free SIRO Mechanism

	VI. Limiting Realized Envy
	VII. Concluding Remarks
	Appendix A. The Buffer-Queue Markov Chain

	REFERENCES




