Large Matching Markets*

Jacob D. Leshno

Large matching models allow for a simpler description of matching markets.
In physics, models of a handful of molecules are complicated, but it is simple
to characterize the behavior of a gas consisting of great numbers of molecules
moving in all directions. Likewise, by considering continuum models or the limit
of increasingly large markets we are able tractably characterize the main features
of the market, and abstract away from discreteness constraints or pathological
situations.

The analytic tractability of large matching models allows us to ask a richer
set of questions. To motivate the discussion, this chapter focuses on one such
vein of questions: does the choice of the proposing side in DA matter? If it does,
how much does it matter? These questions pose a long-standing puzzle. Gale
and Shapley (1962) showed that men receive their optimal matching in the men-
proposing DA, but their pessimal matching under the women-proposing DA.
However, this theoretical result does little to inform us about the magnitude of
the difference, and simple examples show that it is possible that the difference
is very large and it is possible that there is no difference at all. Given a real
market, should we expect this difference to be large or small? In this chapter,
we will show that large matching models can allow us to answer this practical
question.

Further, to reap the benefits that large markets offer, we need to develop a
language. A lay person person may not find it natural to consider eating an in-
finitesimally larger apple. Indeed, most students are somewhat perplexed when
they first learn about derivatives. On the other hand, a trained economist may
be surprised that a grocer will not sell v/2 apples, being so used to thinking of
goods as infinitely divisible. By abstracting away from discreteness constraints,
economists gained a great deal of intuition, employing the tools of calculus to
analyze problems and gaining important intuition in the form of marginal effects
(even if apples only come in discrete units).

The models we review in this chapter develop a language that provides us
with a strong set of tools to better understand matching markets. Models of
random matching markets allow us to give the more nuanced and useful answer
of what is likely to happen, ignoring possible but highly unlikely pathological
cases. The analysis will allow us to quantify the magnitude of effects and find
which market features are important to consider. Continuum matching markets
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allow us to use the tools of calculus and answer questions such as: how will the
market respond to a change? Where should the planner direct investment to
improve welfare? In addition, these models also provide a foundation for the
econometric tools that allow estimation of the parameters that are necessary
inputs to answer these questions.

The remainder of the chapter is organized as follows. Section 1 discusses
models of one-to-one matching in which preferences are randomly drawn, focus-
ing on using such models to understand the effect of the choice of the proposing
side in DA. Section 2 discusses a many-to-one model in which a continuum of
students is matched to a finite number of schools. Either section can be read
independently of the other.

1 Random matching markets and the puzzle of
the proposing side

When Roth and Peranson (Roth and Peranson, 1999) were tasked with redesign-
ing the NRMP, both students and hospitals lobbied to have their side propose.
As we have proved in previous chapters, all men are weakly better off under the
men-proposing DA (MPDA) than under any other stable matching. A simple
example with two men and and two women illustrates this:

Example 1 (Two-by-Two Economy). Consider a market with two women
w1, we and two men my, mo with preferences

mi @ wyp > Wy w1 @My > My

Mo : Wo > Wq Wy M1 = Mo

Under MPDA both men are matched to their top choice, and under woman-
proposing DA (WPDA) both men are matched to their bottom choice.

However, the choice of the proposing side ended up being almost irrelevant in
practice. Roth and Peranson simulated both the student and hospital-proposing
algorithms on real past data and found that the choice of the proposing side
made very little difference. Although some students did benefit from having
their side propose, less than one in a thousand medical students was affected.
And even those who were affected mostly received a similarly ranked match.

This finding posed a theoretical challenge. While theory correctly predicted
that men did weakly benefit from having their side propose, it failed to inform us
that the choice of the proposing side is immaterial. In Example 1 the choice of
the proposing side affects all agents, and determines whether an agent receives
their top choice or least preferred choice. What explains this difference? Does
this imply there is something special about the preferences submitted to the
NRMP? What should we expect in other markets?



1.1 Saying the market is “large” is not enough

One conjecture (motivated by the title of this chapter) might be that the NRMP
matches over 20,000 doctors every year, while Example 1 includes only two men
and two women. What if we restrict attention to markets that have many
agents?

Example 2 (Large Market with Opposite Preferences). Consider a market with
n women {wy, ..., w,} and n men {my,...,m,} with preferences

My Wi > Wig1 >~ > Wy > Wy > -+ > Wi—1

Wi My <My < <My <My < <My

Under MPDA all men are matched to their top choice, and under WPDA all
men are matched to their bottom choice.

Example 2 shows that the choice of the proposing side can have a large effect
in a market of any size. The following example goes further, showing that absent
of some additional structure the number of agents in the market is, in a sense,
irrelevant.

Example 3 (Island Replication). Consider a market with 2n women {w¥, w5 }1.<,,
and 2n men {m%, m5},<, with preferences

m¥ wf - wk =0 wh :mb = mk - )
mh s wh = wh =0 wh :my = mh =0

This market is equivalent to n copies of the market from Example 1, as men
m¥, m& can only match to women wf, w§.

1.2 Random matching markets

From these examples and the NRMP simulations we learned that the choice
of the proposing side can matter a lot for some economies, but makes little
difference for others.

Therefore, our next step is to explore a range of economies. A natural
starting point is to explore economies drawn uniformly at random.! A random
matching market is composed of a set of men M and a set of women W in which
preferences are generated by drawing a complete preference list for each man
and each woman independently and uniformly at random. Thus, for each man
m, we draw a complete ranking >,, from a uniform distribution over the |[WW|!
possible rankings.

We introduce two metrics to asses the benefit to the proposing side.

IFor tractability, the model assumes preferences are uncorrelated. We will allow arbitrary
correlations in Section 2



Definition 4. Given a matching u, the men’s average rank of wives is given by

1

Ryex (N) = W

>° Ranky(u(m),

meM\M
where M is the set of men who are unmatched under .2

Similarly, the women’s average rank of husbands is given by

1
IWAW

S° Ranky (u(w),

weEW\W

Rwomex (N)

where W is the set of women who are unmatched under .

The men-proposing DA (MPDA) produces the Men Optimal Stable Match-
ing (MOSM), and the woman-proposing DA (WPDA) produces the Women
Optimal Stable Matching (WOSM). Recall that these are the extreme points in
the lattice of stable matchings. In particular, each man is matched to his most
preferred spouse under the MOSM and to his least preferred spouse under the
WOSM (out of all the women he is matched to in some stable matching). If a
man is matched to the same woman under both the MOSM and WOSM, then he
has a unique stable partner. Pittel (1989) and Knuth et al. (1990) characterize
the MOSM and WOSM for a random matching market with [W| = |M| = n as
n grows large.

Theorem 5 (Pittel (1989)). In a random matching market with n men and n
women, the fraction of agents who have multiple stable partners converges to 1
as n — 0o. Furthermore,

logn

Ryex (WOSM) g
n/logn

In words, there is a substantial benefit to the proposing side in a typical ran-
dom matching market with » men and n women. The benefits are widespread,
most men strictly prefer their spouse in the MOSM over their spouse in the
WOSM. The benefits are also large, under the MOSM a men is matched to
his log(n) most preferred wife (on average), while under the WOSM a men is
matched to his n/log(n) most preferred wife (on average). For example, if we
randomly draw a market with n = 1,000 men and women, then each men ex-
pects to be matched to his log(1000) a2 7 most preferred wife under the MOSM,
but to his 1000/ log(1000) =~ 145 most preferred wife under the WOSM. Since
the core of the economy is the set of stable matchings, we can equivalently say

that the core is large.

2 M does not depend on u because an agent who is unmatched in some stable matching is
unmatched in any stable matching.



While we may not necessarily be interested in the behavior of large random
matching markets, it is useful to consider n — oo for two reasons. First, it
is much easier to prove and characterize the asymptotic behavior. Second, by
taking limits we can gain an intuition for the “first-order effect” in the market,
abstracting away from secondary issues. As a result, the proof to can be more
elegant and provide more intuition.

1.3 Random matching markets with short preference lists

Theorem 5 poses a puzzle. Roth and Peranson (1999) had data on multiple years
and observed a dramatically smaller effect in the NRMP data. What makes the
NRMP so different from these random matching markets? Roth and Peranson
(1999) conjectured that the difference was due to a different distribution of
preference lists. Most students’ preference lists include a few dozen hospitals at
most, and omit the vast majority of hospitals.

A random matching market with short preference lists is composed of a set
of men M and a set of women W in which women have arbitrary complete
preference lists, and the preferences of each men is generated by drawing k
women uniformly and independently. The size of the market is n = [W| = |[M|.
We consider the case where k < n, that is, markets where the number of
participants is large relative to the length of randomly drawn preference lists.

Theorem 6 (Immorlica and Mahdian (2005)). In a random matching market
with short preference lists with n men and n women, for any fized length of
preference list k, the expected fraction of agents who have multiple stable partners
converges to 0 as n — co.

In other words, large economies in which one side has constant length ran-
domly drawn preference lists have a small set of stable matchings, in the sense
that most agents have the same partner under all stable matchings. This type
of result is often referred to in the literature as a core convergence result.

Note that this result only holds for randomly drawn short preference lists.
Example 3 shows a large economy with short preference list that has many
stable matchings.

To prove the result, it is sufficient to determine the probability that a given
man mg is matched to the same woman under the MOSM and the WOSM.
While we can easily calculate both using DA with either side proposing, it is
not a priory clear how we can tractably obtain the probability that both assign
myg to the same partner. Therefore, the proof leverages the structure of stable
matchings, and it uses rejection chains and the McVitie and Wilson (1971)
algorithm to determine whether mg has multiple stable partners.

Consider man myg in a randomly drawn market such that the MOSM p
matches mg to u(mg) = wg € W. If there is another stable matching u’ such
that u/(mp) = w’ # wyp, then the matching ' remains stable even if we change
the preferences of woman wg so that she finds mg unacceptable. This change
will make woman wq reject man my if he proposes to her in MPDA. Because the
order in which men propose in men-proposing DA does not affect the resulting



match, we can first run MPDA until we reach the MOSM, and only then reject
man mg and track the following steps of the algorithm.

The sequence of proposals following the rejection of mg by u(mg) = wq is
called a rejection chain. The algorithm continues with a proposal from man
myg to his next most preferred wife. If mg proposed to a woman who is already
matched to a more preferred husband, mg’s proposal will be rejected, and myg
will keep proposing. If mg proposed to a woman who prefers mg over her
current match mi, mg’s proposal will be temporarily accepted, and m; will
start proposing. This generates a chain of proposals, where at any time at most
one man is making proposal, and a new man starts proposing when displaced
by the previous man.

The chain can terminate in one of three ways: (i) a proposing man exhausted
his preference list, (ii) a man proposed to an unmatched woman w # wg and the
proposal was accepted, or (iii) a man proposed to the unmatched woman wg and
the proposal was accepted. If (i) or (ii) happened, the algorithm will output a
matching in which the set of agents that are matched is different from the set of
agents matched under p, and therefore the outputted matching cannot be stable
under for the original economy (since by the rural hospital theorem any stable
matching leaves the same agents unmatched). It is a good exercise to show this
implies that there are no stable matchings in which man mq is matched to a
woman w such that p(mg) >y, w. If (iii) happened, then the algorithm will
output a matching p’ in which the set of agents that are matched is the same
as the set of agents matched under u, and it is a good exercise to show that this
is a new stable matching in which mg is matched to a different wife such that
(' (mo) <m, p(mo).

It is left to determine the probability that a rejection chain terminates in
(iii), and not in (i) or (ii). To do so, we first calculate the expected number
of women that are unmatched in any stable matching. Let X be the (random)
number of women that do not appear in any man’s preference list (i.e., all men
find unacceptable). Clearly, X is a lower bound for the number of unmatched
women.

By the previous arguments, the probability that man mg has an additional
stable partner is at most the probability that the rejection chain terminates with
a proposal to woman wy (his original partner) and not with a proposal to an
unmatched woman. By the principle of deferred decision, we can dynamically
draw the men’s preferences only as the algorithm asks the men to propose. The
next proposal by a men will be drawn uniformly at random among all women
the man did not previously propose to, and therefore is at least as likely to go to
an unmatched woman (who was not previously proposed to) as it is to go to wyp.
Thus, the probability that wg receives a proposal before all of the unmatched
woren is at most 1/(1 + X).

A probabilistic calculation (using a variant of the occupancy problem) shows
that for any fixed length of preferences list £ and market size n, we have that

1 ekt 4 k2
FE < .
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By linearity of expectation, this bounds the expected fraction of men who have
multiple stable partners, completing the argument.

1.4 Unbalanced Random Matching Markets

While Theorem 6 provides us with an answer to the puzzle presented by the
NRMP data, it leaves some open questions as well. The contrast with Theorem
5 shows that the assumption that preference lists are short is essential, and
preference lists need to be so short (and random) that many agents remain
unmatched. However, this does not match the economies we see in the NRMP.
Preferences lists may be short, but agents choose a preference list that is likely
to get them matched.

Another remaining challenge is giving a prediction for general markets that
do not have the particular features of the model, namely markets that are not
necessarily large or with short preference list. Should we expect a substantial
benefit to the proposing side in most matching markets?

As it turns out, in any documented matching market the benefit to the
proposing side is negligible, and the choice of the proposing side in DA is imma-
terial. In other words, the data suggests that the small core documented in the
NRMP is the typical case. If a matching market asks you to predict whether the
choice of the proposing side will make a difference, the empirical data suggests
to answer that the choice will have a negligible effect.

Ashlagi et al. (2017) provide an explanation for why general matching mar-
kets will have a small core. A key observation is that Theorem 5 considered
markets in which the number of women is exactly equal to the number of men.
To gain intuition, consider standard markets with payments. In standard mar-
kets an exact balance between buyers and sellers can generate a large core, but
it is eliminated by any imbalance. For example, consider a market with 100
buyers with unit demand and willing to pay 1 for an item, and 100 sellers each
offering one unit of the item with reservation value of 0. The core of this market
is large, and any price between 0 and 1 will generate a core allocation. However,
if we add even a single seller there is a unique clearing price of 0, because one
seller must be unmatched and willing to sell for any positive price. Therefore,
we consider what happens in unbalanced matching markets in which there is a
different number of men and women.

Theorem 7 (Ashlagi et al. (2017)). In a random matching market with n
men and n + 1 women the fraction of agents who have multiple stable partners
converges to 0 as n — co. Moreover, for any € > 0 and sufficiently large n, in
every stable matching p

Ryex(p) < (1+¢)logn,
n

(1+¢e)logn’

v

Rywomen (M)

In other words, even the slightest imbalance eliminates the benefit to the
proposing side and, while there may be multiple stable matchings, the choice of



the proposing side makes little difference. That is, balanced random matching
markets (which have exactly the same number of men and women) are special
and atypical (see also Theorem 12). This suggests that in practice we should see
a small core in any matching market, as exactly balanced markets are unlikely.
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Figure 1: Average rank of men given different number of men and |W| = 40
women.

Theorem 7 also shows the benefit to the short side, regardless of the propos-
ing side. If there are n men and n women, the proposing side receives their
log(n) most preferred partner, and the other side receives their n/log(n) most
preferred partner. If we add additional women to the market, men will be bet-
ter off and the existing women will be worse off. Therefore, we should expect
the men to receive their log(n) partner if the men propose and we add an-
other woman. More surprising is that in an unbalanced market, men receive
their log(n) most preferred partner in every stable matching. For example, in
a market with 1000 men and 1001 women, a man is matched to his 7th most
preferred partner (on average), and a woman is matched to her 145th most
preferred partner in any stable matching.

3Balanced random matching markets impose a particular distribution of preferences and
assume that agents find every possible partner acceptable. In practice, we might expect
agents’ preferences to be more highly correlated, and that some agents will generally be found
unacceptable. Since both tend to shrink the set of stable matchings, we should expect a small
core.



When the imbalance is greater, the benefit to the short side is greater, and
the choice of the proposing side is insignificant.

Theorem 8 (Ashlagi et al. (2017)). Fiz A > 0. In a random matching market
with n men and (14 X\)n women the fraction of agents who have multiple stable
partners converges to 0 as n — co. Moreover, for sufficiently large n, in every
stable matching | the men’s average rank of wives is at most k, and the women’s
average rank of husbands is at least n/(1 + k) where k = (14 X)log(1 +1/X) is
a constant that depends only on .

In other words, substantial imbalance leads to an allocation that is very
beneficial to the short side. For example, if A = 0.05, that is, a market with
5% extra women, then men will be matched, on average, with roughly their 3rd
most preferred woman. The women’s average rank of husbands (even if women
propose) is only a factor of (1 4+ x)/2 = 2.1 better than being matched with a
random man.

The proof of Theorems 7 and 8 again relies on analysis of rejection chains.
As in the proof of Theorem 6, it would have been sufficient to evaluate the result
of MPDA and WPDA. MPDA is tractable, since each man proposes to a small
number of women (at most log(n)), and the next woman any man will propose
to is, approximately, a woman drawn uniformly at random. But WPDA is not as
tractable — since a woman make many proposals, the next proposal of a woman
substantially depends on the set of men she already proposed to. Therefore,
instead of evaluating WPDA we evaluate MPDA and analyze rejection chains
to show that MPDA and WPDA will be very close.

The proof of Theorem 8 is similar to that of Theorem 6. Consider a man my
that is matched under MPDA to woman wg. If there are n men and (1 + A\)n
women, An women will remain unmatched. Since there is a large fraction of
unmatched women, the rejection chain that stars with wg rejecting mg is much
more likely to reach one of the An unmatched woman than wy.

The proof of Theorem 7 requires a more delicate analysis of rejection chains.
If there are n men and n + 1 women in the market, there will only be a single
unmatched woman in the market, and a proposal is almost equally likely to go
to wy as it is likely to go to an unmatched woman. To prove the result, we need
to consider all rejection chains jointly. To do so tractably, the proof follows
the calculation of the WOSM through a sequence of rejection chains and keeps
tracks of the set of women S that already obtained their WOSM partner. The
key observation that simplifies the analysis is that if the run of a rejection chain
includes a woman from S accepting a proposal, it must be that the rejection
chain terminates without finding a new stable matching (that is, in (i) or (ii));
otherwise the chain also finds a more preferred partner for a woman in S and we
have a contradiction. Using this observation, the proof follows from two steps.
First, S grows quickly, because once we find a rejection chain that ends in an
unmatched woman, all the women that were part of the chain must be matched
to their WOSM partner. Second, once S is large, it is likely that any proposal
will reach a woman in .S and we can terminate the chain knowing that it cannot
lead to a new stable matching.



1.5 Small random markets

All the theorems we consider in this section are stated for n — oo, which greatly
simplifies the proofs. Obtaining results for finite random markets is considerably
more challenging, but simulations can help us evaluate when we should expected
the asymptotic results to be relevant. Simulations of unbalanced markets show
that the asymptotic characterization accurately describes markets even with 40

agents (see Figure 1.4).
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2 Continuum Matching Markets

The previous section used a sequence of increasingly large matching markets.
A natural question is whether we directly capture the limit object, as this limit
object may allow us to simplify the analysis. As it turns out, the answer is pos-
itive for a different class of matching problems: many-to-one matching markets
where one side is large.* For example, colleges and schools match to a large
number of students. The continuum formulation gives a tractable characteriza-
tion of stable matchings in the form of cutoffs, an admission threshold for each
college. This means that we can describe stable matchings by a low-dimensional
object, and find stable matchings by solving simple demand equations.

2.1 Formal Model

Consider a matching market where there is a finite set of colleges and each
college can match with a large number of students. We start by describing the
limit economy in which each college is matched with a continuum of students (as
introduced in Azevedo and Leshno (2016)). The description of such an economy
needs to capture (i) the preferences of colleges over students and their capacity
limits, and (ii) the preferences of students over colleges. The standard approach
to describe (i) is to assume responsive preferences (Roth, 1985) and represent the
college’s preferences by a preference ordering over all students and a capacity.
Because the set of students is infinite, we instead represent the preferences of
a college by assigning a score to each student, where a student with a higher
score is more preferred by the college. This allows us to describe how colleges
rank a given student by a vector of scores, one score for each college.

Formally, a continuum matching market is described as follows. There is a
finite set of colleges C = {1,...,C} that is to be matched to a continuum of
students. A student is described by a type i = (>i, ri). The student preferences
over colleges are given by =’. The vector r* € [0,1]¢ describes the colleges’
rankings of the students, where college ¢ prefers student i over student j if
ri > ri. We refer to r as the rank or the score of student i at college c. Given
that scores represent ordinal information, we can rescale the scores so that a
student i’s score at college c is the percentile of i in ¢’s ranking over students.®
We use © = £(C) x [0,1]¢ to denote the set of all possible student types, where
L(C) is the set of all strict orderings over C. Note that different colleges can
have different rankings over students. To simplify notation, we assume in this
chapter that all students and colleges are acceptable.®

A continuum market is given by E = [C,n, q] where 7 is a measure over the

40ne can also define a limit economy for large one-to-one economies in which the number
of agents on both sides grows large, but in such limit markets each agent has a preference over
the infinite agents on the other side of the the market (see Section 3.2).

5That is, without loss of generality we can take r% = n ({] €O:rl> ri}) /n(©).

6This is without loss of generality, as we can introduce an additional college and addi-
tional student that represent being unassigned. (Recall that being unassigned is equivalent to
matching with a partner that will always be willing to form a blocking pair).
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set of students © and ¢ = (¢1, . - ., gc) is the capacity of each college. We can use
this representation to describe a standard discrete many-to-one matching market
with a finite number of students by taking n to be a measure with finitely many
atoms, with each atom corresponding to a single discrete student. While we
will later consider discrete economies, this representation is particularly useful
in allowing us to think of economies in which each student is infinitesimal.

Assumption 9. Students and colleges have strict preferences. That is, every
college’s indifference curves are of n-measure 0. That is, for any x € [0,1] we
have that n ({j € © : 7 = z}) = 0.

Assumption 9 ensures that 7(i) = 0 for any ¢ € ©. The following example
illustrates a continuum economy for school choice.

Example 10 (The Line City). Consider a matching market two schools C =
{1, 2} with capacities ¢1, g2. Students live on the segment [0, 1] connecting school
1 and school 2, and are uniformly distributed on this line. A student in location
x € [0, 1] prefers school 1 over school 2 with probability pr(z) = 1—x and prefers
school 2 with probability 1 — pr(z) = . Both schools give higher priority to
students who live closer to the school. That is, the score of a student in location
xis (1 —z,x).
This economy is captured by C = {1,2} and the measure n given by

n({i:2="1,75 €a,b],r{ =1—14}) :/ (1 —pr(z))dzx

bg—a2
2

fora<bel[0,1], and 5 ({i: 1 —ri #ri}) =0.

As the example shows, a continuum market allows arbitrary correlations be-
tween the preferences of students over colleges and the preferences of colleges
over students. This model can also describe markets in which college priori-
ties are distributed independently of student preferences (e.g., in school choice
Abdulkadiroglu et al. (2011)) as a particularly tractable case.

A matching for a continuum economy is given by a mapping u : © — CU{0}.
For each student 7 is assigned to a college u(z), with u(i) = @ denoting the
student is unassigned. With slight abuse of notation we write p(c) for the set
p~1(c) of students assigned to c. To avoid measure theoretic issues, we also
require that for each ¢ € C U {0} we have that the set u(c) is measurable and
that the set {i : u(i) <% ¢} is open.

As in the discrete model, a student-college pair (i,c¢) blocks a matching u
if they can both benefit from matching to each other. A formal definition for
the continuum setting is (i, c) blocks if ¢ =% u(i) and either (i) ¢ did not fill its
capacity, that is n(u(c)) < g, or (ii) there exists j € u(c) such that ri > 4.7
A matching p is stable if it is not blocked by any student-college pair and
n(u(c)) < g. for all c € C.

"Because we are working with a continuous mass of students, a college can technically
always match to an additional infinitesimal student. Such a definition will lead to a paradox,
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2.2 Cutoffs and demand

To obtain a tractable representation of stable matchings, we introduce some
additional notation. A cutoff for college c¢ is a minimal score p.. € [0, 1] required
for admission to ¢. Given a vector of cutoffs p = (p.)ccc, we define the budget
set of student i to be the set of colleges student ¢ can be admitted to, denoted
by Bi(p) = {c € C : r’ > p.}. The demand of student i given cutoffs p is i’s
most preferred college from his budget set

D' (p) = max B'(p)
where D'(p) = 0 if Bi(p) = 0. Finally, aggregate demand for college ¢ given
cutoffs p is given by

D(pln) =n ({i: D'(p) = c}) .

We write D.(p) when 7 is clear from context, and denote overall demand by
D(p) = (De(p)) cec-

Consider a decentralized admission mechanism which posts cutoffs p and
assigns each student to their most preferred college out of their budget set, that
is (i) = D*(p). The resulting matching p will be envy free; if student i prefers
college ¢ over her assigned college u(i) it must be that ¢ ¢ B?(p), and therefore
for any student j € u(c) we have that rJ > p. > ri. The resulting matching
may not be stable because a college ¢ can be assigned more students than its
capacity, or because a college is assigned strictly less students than its capacity
and some student would like to be assigned to that college.

We say that cutoffs p are market clearing cutoffs if for all ¢ € C we have
that D(p) < ¢, and if D.(p) < g, then p. = 0. That is, no college is assigned
more students than its capacity, and a college that did not fill its capacity has
a cutoff equal to 0.8

By the previous arguments, market clearing cutoffs p induce a stable match-
ing given by u(i) = D(p). The following lemma from Azevedo and Leshno
(2016) shows the reverse is also true, and stable matchings are equivalent to
market clearing cutoffs.

Lemma 11. Stable matchings are equivalent to market clearing cutoffs. That
is, every stable matching p corresponds to market clearing cutoffs p defined by
pe = inf{ri : i € p(c)}. Every market clearing cutoff p corresponds to a stable
matching p defined by u(i) = Di(p).

The correspondence also preserves the lattice structure. If p, p’ are both mar-
ket clearing cutoffs, we can define cutoffs p*™ = max(p,p’) and p~ = min(p,p’)

as the college cannot sequentially add all blocking students without violating its capacity
constraint. The definition above gives a formulation of the continuum model that provides
that desired behavior.

8If > de < 1(©), that is, there are more students than college seats, then it is sufficient to
require that D(p) = ¢. This is because in such a case it is impossible to have market clearing
cutoffs such that D.(p) < g. for some c.
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(the min and max are taken coordinate by coordinate). The cutoffs p™, p~ are
also market clearing cutoffs. Moreover, if p, ' are the stable matchings corre-
sponding to p, p’ then p* corresponds to pu A p’ which matches each student i to
min, i {p(2), 1/ (4)}, and p~ corresponds to p V p’ which matches each student i
to max,: {u(i), u'(i)}.

The equivalence of stable matchings and market clearing cutoffs is more gen-
eral, and there are many related characterizations in the literature (e.g., Balinski
and Sonmez (1999), Adachi (2003), Abdulkadiroglu et al. (2011), Fleiner and
Janké (2014)). Tt is particularly useful in continuum economies where the cutoff
characterization offers a tractable way to solve for stable matchings.

2.3 Calculating the stable matching

Let us revisit the market from Example 10. Consider cutoffs p1,ps. College 1
is in the budget set of a student if 7{ > p;, who are the students whose location
is z € [0,1 — p1]. College 2 is in the budget set of students whose location is
x € [p2, 1]. Students remain unassigned if the student’s location is in [1 — p1, pa]
and the student’s budget set is empty. If g1 +¢2 < 1 some students must remain
unassigned, and therefore 1 — p; < po, all students are assigned to the single
college in their budget set, and 1 — p; = q1,1 —p2 = q2. If g1 + g2 > 1, all
students must be assigned and we have that 1 —p; > ps. In which case, demand
for college 1 is all the students whose location is in [0, p2] (which have the budget
set {1}) plus the students whose location is in [ps, 1 —p;] (which have the budget
set {1}) who prefer college 1:

_1-pi+p

1-p1
D1(p) = p2 + / pr(z)dx 5

p2

Likewise, the demand for college 2 is Do(p) = (1 + p? — p3)/2.

Suppose g1 + g2 > 1, and that, without loss, ¢; > 1/2. Because it is impos-
sible for both colleges to fill their capacity, one of the cutoffs must be equal to
0, and it is easy to verify that it must be that p; = 0. If ¢ < 1/2 there is a
unique solution to Ds(p) = g2 which is ps = /1 — 2g2. If go > 1/2 we have a
unique solution py = p; = 0.

If ¢1 + g2 = 1 there are multiple market clearing cutoffs and multiple stable
matchings. For example, if g; = g2 = 1/2 then any p; = p2 € [0,1] are market
clearing cutoffs.

2.4 Generic uniqueness of stable matching

The calculation of market clearing cutoffs shows that it is possible for a contin-
uum economy to have multiple market clearing cutoffs, and correspondingly,
multiple stable matchings. However, it suggests that multiplicity of stable
matching may not be typical, as it only happens in a knife edge event.® This

9Namely, a very particular set of parameters in which the amount of college seats is exactly
equal to the amount of students.
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aligns with the intuition from random matching markets — multiplicity of stable
matchings arises only when the market is balanced. The continuum model allows
us to formalize that this is a knife edge situation, and generically a matching
market has a unique stable matching.

The following theorem requires a technical condition, namely that 7 is reg-
ular. The distribution of student types 7 is regular if the image under D(:|n) of
the closure of the set

{P €[0,1]° : D(:|n) is not continuously differentiable at P}

has Lebesgue measure 0. This technical condition is satisfied if, for example,
D(+|n) is continuously differentiable or if 1 admits a continuous density.

Theorem 12 (Azevedo and Leshno (2016)). Suppose n is regular. Then for
almost any vector of capacities q the market (1, q) has a unique stable matching.

In other words, we can ensure a unique stable matching by slightly perturb-
ing college capacities q.

2.5 Calculating and optimizing for welfare

Let us revisit the market from Example 10 again. The market clearing conditions
allowed us to solve for the stable matching for any ¢;,gs. This allows us to
treat the capacities g1, g2 as decision variables. For example, it is natural to ask
what are the optimal capacities ¢1, ¢o that maximize the sum of student utilities
subject to some constraints or costs.

To define welfare, we need to specify a cardinal utility. A simple specification
that is consistent with the distribution of ordinal preferences in Example 10 is
that a student in location x € [0,1] has utility 1 — z/2 if assigned to school 1
and utility 1 — (1 — x)/2 + ¢ if assigned to school 2, where € ~ U[—1/2,1/2] is
an independent random taste shock. Unassigned students receive utility of 0.

We can obtain tractable expressions for welfare by conditioning on a stu-
dent’s location and budget set. The expected utility of a student in location
x that has the budget set {1},{2} is ugy(z) = 1 — 2/2 and ugoy(v) = 2/2,
respectively. The expected utility of student in location = that has the budget
set {1,2} is given by

ug1,9y(x) = max [l —x/2,x2/2 + €] de

=

x

max [1 — x/2] de + /2 max [x/2 + €] de

D=

= (1‘2—1‘—|—2)

N —

Combining these expressions with the previously derived expressions for the
cutoffs, we obtain the following expressions for welfare. If ¢; + g2 < 1 then
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p1=1—q,p2 =1 — g2 and welfare is
“ ! 2 2
/ u{l}dx“"/ upydr =q —qi/4+ g2 —q3/4 .
0 1—q2

If g1 + ¢2 > 1 with ¢; > 1/2 > ¢ we have that p; = 0 and p; = /1 — 2¢2 and
welfare is
P2 ! 11 3/
u{l}dm + Ug1,2} dx = B~ 6(1 —2¢2) .
0 p

2

2.6 Random sampling and relation to discrete economies

One important interpretation of the continuum matching model is that the
measure 7 represents the distribution from which finite economies are sampled.
Understanding properties of finitely drawn economies is crucial for empirical
work (e.g., Abdulkadiroglu et al. (2017)). This interpretation is also useful for
understanding the continuum model and its relation to finite matching model.
The results below show that indeed we can think of continuum models as an
approximation for finite models in which each student is small relative to the
capacity of schools.

As an illustration, consider Israeli college admission. As in many countries
(the U.S.A. being an exception), college admission is determined by the student’s
grade in standardised national exams. Each program in each university ranks
students according to a score that is calculated based on the subjects the student
took and the grades the student received. Different programs use different
weights and can have different rankings over students.

Each year, there will be a different cohort of students applying. But assum-
ing that exams are consistent from one year to the next, we expect that the
overall distribution of students is similar from one year to the next. A standard
statistical approach is to consider each year as a draw from the same population.

Formally, we model college admission in a given year as a finite sample
Fk = [nk,¢*] of size k from a continuum economy E = [n,g]. We normalize
the total mass of students to be n(©) = 1. The continuum economy represents
the potential population of students, and n captures the joint distribution over
student preferences and student scores (generated by the distribution of student
grades). A finite sample F* = [ ¢*] is generated by randomly drawing k
students from 1 and scaling the capacity vector ¢* = |kq].

Azevedo and Leshno (2016) show that if F has a unique stable matching
(which generically holds) then that stable matching of F* will converge to the
stable matching of E as k — oco. Moreover, they give a characterization of the
distribution of market clearing cutoffs P* for the randomly drawn economy F*.

Theorem 13 (Azevedo and Leshno (2016)). Let P* be a market clearing cutoff
for the continuum economy E = [n,q]. Assume that that Y. q. < 1, D(:|n) is
differentiably continuous, and that 9D(P*) is nonsingular. Then the asymptotic
distribution of the difference between P* and P* satisfies

Vk - (P* - P*) % N(0,0D(P*)"L - £P - (0D(P*)™Y)),

16



where N (-, ) denotes a C-dimensional normal distribution with given mean and
(1 —gqq) ifc=d,

: : D s DYy _
covariance matriz. The matriz %7 is given by (E )cd = { e it ed.

3 End Notes

3.1 Other applications of random matching markets and
rejection chains

Random matching markets and the analysis of rejection chains can be applied to
answer other questions as well. Kojima and Pathak (2009) show that a college
can benefit from misreporting its preferences if there is a rejection chain that
brings a more preferred student to apply to the school. In a random many-to-
one economy with short lists, in which a school can be matched to a constant
number of students and the number of both schools and students is sufficiently
large, schools will not be able to benefit by misreporting their preferences. Bird
et al. (2020) analyze a large matching market in which colleges offer two kinds of
positions, with and without a scholarship, as considered in Chapter ??. In their
model preferences are random, but a student that is rejected from a position
with a scholarship is likely to apply to the same college without a scholarship.
As a result, rejection chains are likely to return to the college, and colleges can
benefit from misreporting their preference.

Kojima et al. (2013) and Ashlagi et al. (2014) use rejection chains to analyze
a matching market with couples. While it is possible that a market with couples
will have no stable matching, the NRMP succeeded to find a stable matching
with couples since its redesign. These papers provide a theoretical explanation,
showing that the market is likely to have a stable matching as long as there are
not too many couples in the market.

Menzel (2015) estimates a random matching market. He formulates stable
matching as a discrete choice problem, in which each agent chooses his match
from a budget of agent from the other side who are willing to form a block pair.
Analysis of rejection chains is used to show that this choice problem is well
formulated because the agent’s budget set is almost independent of the agent’s
stated preferences. As the market grows large, each agent’s budget set includes
more options. It is well known that agent utility in discrete choice models is
inflated with the number of options, and Menzel (2015) provides proper scaling
that ensures the market maintains its key properties as it grows. Lee (2017)
analyzes markets with idiosyncratic and common taste shocks with bounded
support and shows that as the market grows large all stable matchings become
assortative on the common taste shocks and match agents to spouses that give
almost the maximal possible idiosyncratic taste shock.

Che and Tercieux (2019) and Yariv and Lee (2014) use markets with ran-
domly drawn preferences to evaluate welfare of different mechanisms and prefer-
ence distributions. Liu and Pycia (2016) show that many mechanisms coincide
as the market grows large.
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3.2 Additional applications of continuum models

Abdulkadiroglu et al. (2015) introduced a matching model for school choice
with random tie breaking. Azevedo (2014) uses a continuum model to tractably
study the market power of large firms in a matching markets, and shows that
a large firm can benefit from reducing its capacity. The intuition is that the
firm rejects marginal matches of low value and receives instead infra-marginal
matches of high value. Che and Koh (2016) use a continuum model to study
decentralized college admission when college face a risk of being over or under
capacity.

Ashlagi and Shi (2016), Shi (2019) use a continuum model to optimize over
different school choice mechanisms. Leshno and Lo (2020) provide a cutoff char-
acterization for the top trading cycles mechanism for school choice. A tractable
continuum model allows for optimization of investment in school quality. Chap-
ter 7?7 discusses the use of continuum models to study assignment mechanisms
without monetary transfers.

Continuum models are also used to analyze markets with complementarities
(Azevedo and Hatfield (2012), Che et al. (2019)) and show existence of stable
matchings under more general preferences. Leshno (2020) uses the continuum
model to give a simple cutoff characterization of stable matchings when students
have peer-dependent preferences.

Jagadeesan (2017) develops a more general matching model that allows for
multi-sided matchings. Greinecker and Kah (2018) generalize the notion of
stability to a one-to-one matching between arbitrary sets of men and women.
Gonczarowski et al. (2019) use logical compactness to characterize matching
markets with infinitely many agents.

Exercises

1. Show that if (i) or (ii) happen in the algorithm given in 1.3, then there
are no stable matchings in which man mg is matched to a woman w such
that p(mg) =, w.

2. Show that if (iii) happen in the algorithm given in 1.3, the resulting match-
ing is a new stable matching in which mg is matched to a different wife
such that p'(mg) <m, p(mo)-

3. Write the economy that captures the following and calculate its stable
matching and market clearing cutoffs. There are n colleges with identical
capacities ¢ = g2 = -+ = ¢, = ¢. Student references are independent of
any college’s rankings, and a college’s ranking over students is indepen-
dent of other college’s ranking. Student preferences drawn uniformly at
random.

4. Write the economy that captures the following and calculate its stable
matching and market clearing cutoffs. There are n colleges with identical
capacities g1 = ¢o = --- = ¢, = q. Student references are independent of
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any college’s rankings, and a college’s ranking over students is independent
of other college’s ranking. All student have the preference ordering 1 >
2>=3--->=n.

5. Give an example with two colleges and a continuum of students where
there are multiple stable matchings (hint: think of the opposite preferences
economy). Find a slight perturbation to this economy that leads to an
economy with a unique stable matching.

References

Abdulkadiroglu, Atila, Che, Yeon-Koo, and Yasuda, Yosuke. 2011. Resolving
conflicting preferences in school choice: The” boston mechanism” reconsid-
ered. American Economic Review, 101(1), 399-410.

Abdulkadiroglu, Atila, Che, Yeon-Koo, and Yasuda, Yosuke. 2015. Expanding
“Choice” in School Choice. American Economic Journal: Microeconomics,
7(1), 1-42.

Abdulkadiroglu, Atila, Angrist, Joshua D, Narita, Yusuke, and Pathak, Parag A.
2017. Research design meets market design: Using centralized assignment for
impact evaluation. Econometrica, 85(5), 1373-1432.

Adachi, Hiroyuki. 2003. A search model of two-sided matching under nontrans-
ferable utility. Journal of Economic Theory, 113(2), 182-198.

Ashlagi, Itai, and Shi, Peng. 2016. Optimal allocation without money: An
engineering approach. Management Science, 62(4), 1078-1097.

Ashlagi, Itai, Braverman, Mark, and Hassidim, Avinatan. 2014. Stability in
large matching markets with complementarities. Operations Research, 62(4),
713-732.

Ashlagi, Itai, Kanoria, Yash, and Leshno, Jacob D. 2017. Unbalanced ran-
dom matching markets: The stark effect of competition. Journal of Political
Economy, 125(1), 69-98.

Azevedo, Eduardo M. 2014. Imperfect competition in two-sided matching mar-
kets. Games and Economic Behavior, 83, 207-223.

Azevedo, Eduardo M, and Hatfield, John William. 2012. Complementarity and
multidimensional heterogeneity in matching markets. Unpublished mimeo.

Azevedo, Eduardo M, and Leshno, Jacob D. 2016. A supply and demand frame-
work for two-sided matching markets. Journal of Political Economy, 124(5),
1235-1268.

Balinski, Michel, and Sénmez, Tayfun. 1999. A tale of two mechanisms: student
placement. Journal of Economic theory, 84(1), 73-94.

19



Bir6, Péter, Hassidim, Avinatan, Romm, Assaf, Shorrer, Ran I, and S6vago,
Sandor. 2020. Need versus Merit: The Large Core of College Admissions
Markets. arXiv preprint arXiv:2010.08631.

Che, Yeon-Koo, and Koh, Youngwoo. 2016. Decentralized College Admissions.
J. Polit. Econ., 124(5), 1295-1338.

Che, Yeon-Koo, and Tercieux, Olivier. 2019. Efficiency and stability in large
matching markets. Journal of Political Economy, 127(5), 2301-2342.

Che, Yeon-Koo, Kim, Jinwoo, and Kojima, Fuhito. 2019. Stable matching in
large economies. Econometrica, 87(1), 65-110.

Fleiner, Taméas, and Jankd, Zsuzsanna. 2014. Choice function-based two-sided
markets: stability, lattice property, path independence and algorithms. Algo-
rithms, 7(1), 32-59.

Gale, D., and Shapley, L.L. 1962. College admissions and the stability of mar-
riage. American Mathematical Monthly, 69, 9-15.

Gonczarowski, Yannai A, Kominers, Scott Duke, and Shorrer, Ran 1. 2019. To
Infinity and Beyond: Scaling Economic Theories via Logical Compactness.

Greinecker, Michael, and Kah, Christopher. 2018. Pairwise stable matching in
large economies. Tech. rept. Working Papers in Economics and Statistics.

Immorlica, N., and Mahdian, M. 2005. Marriage, honesty, and stability. Pages
53-62 of: Proceedings of the Sixzteenth Annual ACM-SIAM Symposium on
Discrete algorithms.

Jagadeesan, Ravi. 2017. Complementary Inputs and the Existence of Stable
Outcomes in Large Trading Networks. Page 265 of: EC.

Knuth, D. E., Motwani, R., and Pittel, B. 1990. Stable husbands. Proceedings
of the First Annual ACM-SIAM Symposium on Discrete Algorithms, 1, 1-14.

Kojima, F., and Pathak, P. A. 2009. Incentives and Stability in Large Two-Sided
Matching Markets. American Economic Review, 99, 608-627.

Kojima, Fuhito, Pathak, Parag A, and Roth, Alvin E. 2013. Matching with
couples: Stability and incentives in large markets. The Quarterly Journal of
Economics, 128(4), 1585-1632.

Lee, SangMok. 2017. Incentive compatibility of large centralized matching mar-
kets. The Review of Economic Studies, 84(1), 444-463.

Leshno, Jacob, and Lo, Irene. 2020. The cutoff structure of top trading cycles
in school choice. The Review of Economic Studies.

Leshno, Jacob D. 2020. Stable Matching with Peer Effects in Large Markets —
Existence and Cutoff Characterization. Unpublished mimeo.

20



Liu, Qingmin, and Pycia, Marek. 2016. Ordinal efficiency, fairness, and incen-
tives in large markets. working paper.

McVitie, D.G., and Wilson, L.B. 1971. The stable marriage problem. Commu-
nications of the ACM, 14(7), 486-490.

Menzel, Konrad. 2015. Large matching markets as two-sided demand systems.
Econometrica, 83(3), 897-941.

Pittel, B. 1989. The average number of stable matchings. SIAM Journal on
Discrete Mathematics, 2(4), 530-549.

Roth, A.E. 1985. The college admissions problem is not equivalent to the mar-
riage problem. Journal of Economic Theory, 36(2), 277—288.

Roth, Alvin E, and Peranson, Elliott. 1999. The redesign of the matching mar-
ket for American physicians: Some engineering aspects of economic design.
American economic review, 89(4), 748-780.

Shi, Peng. 2019. Optimal Priority-Based Allocation Mechanisms. Awvailable at
SSRN 3425348.

Yariv, L., and Lee, S. 2014. On the Efficiency of Stable Matchings in Large
Markets. Working paper.

21



